924 research outputs found
Spin susceptibility of Anderson impurities in arbitrary conduction bands
Spin susceptibility of Anderson impurities is a key quantity in understanding
the physics of Kondo screening. Traditional numerical renormalization group
(NRG) calculation of the impurity contribution to
susceptibility, defined originally by Wilson in a flat wide band, has been
generalized before to structured conduction bands. The results brought about
non-Fermi-liquid and diamagnetic Kondo behaviors in , even
when the bands are not gapped at the Fermi energy. Here, we use the full
density-matrix (FDM) NRG to present high-quality data for the local
susceptibility and to compare them with
obtained by the traditional NRG. Our results indicate
that those exotic behaviors observed in are unphysical.
Instead, the low-energy excitations of the impurity in arbitrary bands only
without gap at the Fermi energy are still a Fermi liquid and paramagnetic. We
also demonstrate that unlike the traditional NRG yielding
less accurate than , the FDM method allows a
high-precision dynamical calculation of at much reduced
computational cost, with an accuracy at least one order higher than
. Moreover, artifacts in the FDM algorithm to
, and origins of the spurious non-Fermi-liquid and
diamagnetic features are clarified. Our work provides an efficient
high-precision algorithm to calculate the spin susceptibility of impurity for
arbitrary structured bands, while negating the applicability of Wilson's
definition to such cases.Comment: the published versio
An Improved Multidimensional MPA Procedure for Bidirectional Earthquake Excitations
Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA) method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two components earthquake excitations, and independent analysis in each direction is not required and the application of simplified superposition formulas is avoided. The strength reduction factor spectra based on superposition of earthquake excitations are discussed and compared with the traditional strength reduction factor spectra. The step-by-step procedure is proposed to estimate seismic demands of structures. Two examples are implemented to verify the accuracy of the method, and the results of the examples show that (1) the IMMPA method can be used to estimate the responses of structure subjected to bidirectional earthquake excitations. (2) Along with increase of peak of earthquake acceleration, structural response deviation estimated with the IMMPA method may also increase. (3) Along with increase of the number of total floors of structures, structural response deviation estimated with the IMMPA method may also increase
AquaÂ(2,2′-bipyridine-Îş2 N,N′)[2-(3-thienÂyl)malonato-Îş2 O,O′]zinc(II) dihydrate
In the crystal structure of the title compound, [Zn(C7H4O4S)(C10H8N2)(H2O)]·2H2O, the ZnII ion assumes a trigonal–bipyramidal coordination geometry completed by two N atoms from a 2,2′-bipyridine ligand, two O atoms from a 2-(3-thienÂyl)malonate anion and a water molÂecule. The S atom of the 2-(3-thienÂyl)malonate ligand is disordered over two sites with an occupancy ratio of 0.701 (5):0.299 (5). InterÂmolecular O—Hâ‹ŻO hydrogen bonding is present in the crystal structure
Few-Body Systems Composed of Heavy Quarks
Within the past ten years many new hadrons states were observed
experimentally, some of which do not fit into the conventional quark model. I
will talk about the few-body systems composed of heavy quarks, including the
charmonium-like states and some loosely bound states.Comment: Plenary talk at the 20th International IUPAP Conference on Few-Body
Problems in Physics, to appear in Few Body Systems (2013
Use of low-dose computed tomography to assess pulmonary tuberculosis among healthcare workers in a tuberculosis hospital
BACKGROUND: According to the World Health Organization, China is one of 22 countries with serious tuberculosis (TB) infections and one of the 27 countries with serious multidrug-resistant TB strains. Despite the decline of tuberculosis in the overall population, healthcare workers (HCWs) are still at a high risk of infection. Compared with high-income countries, the TB prevalence among HCWs is higher in low- and middle-income countries. Low-dose computed tomography (LDCT) is becoming more popular due to its superior sensitivity and lower radiation dose. However, there have been no reports about active pulmonary tuberculosis (PTB) among HCWs as assessed with LDCT. The purposes of this study were to examine PTB statuses in HCWs in hospitals specializing in TB treatment and explore the significance of the application of LDCT to these workers. METHODS: This study retrospectively analysed the physical examination data of healthcare workers in the Beijing Chest Hospital from September 2012 to December 2015. Low-dose lung CT examinations were performed in all cases. The comparisons between active and inactive PTB according to the CT findings were made using the Pearson chi-square test or the Fisher’s exact test. Comparisons between the incidences of active PTB in high-risk areas and non-high-risk areas were performed using the Pearson chi-square test. Analyses of active PTB were performed according to different ages, numbers of years on the job, and the risks of the working areas. Active PTB as diagnosed by the LDCT examinations alone was compared with the final comprehensive diagnoses, and the sensitivity and positive predictive value were calculated. RESULTS: A total of 1 012 participants were included in this study. During the 4-year period of medical examinations, active PTB was found in 19 cases, and inactive PTB was found in 109 cases. The prevalence of active PTB in the participants was 1.24%, 0.67%, 0.81%, and 0.53% for years 2012 to 2015. The corresponding incidences of active PTB among the tuberculosis hospital participants were 0.86%, 0.41%, 0.54%, and 0.26%. Most HCWs with active TB (78.9%, 15/19) worked in the high-risk areas of the hospital. There was a significant difference in the incidences of active PTB between the HCWs who worked in the high-risk and non-high-risk areas (odds ratio [OR], 14.415; 95% confidence interval (CI): 4.733 – 43.896). Comparisons of the CT signs between the active and inactive groups via chi-square tests revealed that the tree-in-bud, cavity, fibrous shadow, and calcification signs exhibited significant differences (P = 0.000, 0.021, 0.001, and 0.024, respectively). Tree-in-bud and cavity opacities suggest active pulmonary tuberculosis, whereas fibrous shadow and calcification opacities are the main features of inactive pulmonary tuberculosis. Comparison with the final comprehensive diagnoses revealed that the sensitivity and positive predictive value of the diagnoses of active PTB based on LDCT alone were 100% and 86.4%, respectively. CONCLUSIONS: Healthcare workers in tuberculosis hospitals are a high-risk group for active PTB. Yearly LDCT examinations of such high-risk groups are feasible and necessary. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40249-017-0274-6) contains supplementary material, which is available to authorized users
Self-Reference Emerges Earlier than Emotion during an Implicit Self-Referential Emotion Processing Task: Event-Related Potential Evidence
Self-referential emotion refers to the process of evaluating emotional stimuli with respect to the self. Processes indicative of a self-positivity bias are reflected in electroencephalogram (EEG) signals at ~400 ms when the task does not require a discrimination of self from other. However, when distinguishing between self-referential and other-referential emotions is required, previous studies have shown inconsistent temporal dynamics of EEG signals in slightly different tasks. Based on the observation of early self–other discrimination, we hypothesized that self would be rapidly activated in the early stage to modulate emotional processing in the late stage during an implicit self-referential emotion. To test this hypothesis, we employed an implicit task in which participants were asked to judge the order of Chinese characters of trait adjectives preceded by a self (“I”) or other pronoun (“He” or “She”). This study aimed to explore the difference of social-related emotional evaluation from self-reference; the other pronoun was not defined to a specific person, rather it referred to the general concept. Sixteen healthy Chinese subjects participated in the experiment. Event-related potentials (ERPs) showed that there were self-other discrimination effects in the N1 (80–110 ms) and P1 (170–200 ms) components in the anterior brain. The emotional valence was discriminated in the later component of N2 (220–250 ms). The interaction between self-reference and emotional valence occurred during the late positive potential (LPP; 400–500 ms). Moreover, there was a positive correlation between response time (RT) and N1 in the self-reference condition based on the positive-negative contrast, suggesting a modulatory effect of the self-positivity bias. The results indicate that self-reference emerges earlier than emotion and then combines with emotional processing in an implicit task. The findings extend the view that the self plays a highly integrated and modulated role in self-referential emotion processing
- …