7,145 research outputs found

    NMR Search for the Spin Nematic State in LaFeAsO Single Crystal

    Full text link
    We report a 75-As single crystal NMR investigation of LaFeAsO, the parent phase of a pnictide high Tc superconductor. We demonstrate that spin dynamics develop a strong two-fold anisotropy within each orthorhombic domain below the tetragonal-orthorhombic structural phase transition at T[TO]~156 K. This intermediate state with a dynamical breaking of the rotational symmetry freezes progressively into a spin density wave (SDW) below T[SDW]~142 K. Our findings are consistent with the presence of a spin nematic state below T[TO] with an incipient magnetic order.Comment: Revised manuscript accepted for publication in Phys. Rev. Let

    Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non-photon-number-resolving detectors

    Full text link
    We propose a scheme for efficient cluster state quantum computation by using imperfect polarization-entangled photon-pair sources, linear optical elements and inefficient non-photon-number-resolving detectors. The efficiency threshold for loss tolerance in our scheme requires the product of source and detector efficiencies should be >1/2 - the best known figure. This figure applies to uncorrelated loss. We further find that the loss threshold is unaffected by correlated loss in the photon pair source. Our approach sheds new light on efficient linear optical quantum computation with imperfect experimental conditions.Comment: 5 pages, 2 figure

    Measurements of the Yield Stress in Frictionless Granular Systems

    Full text link
    We perform extensive molecular dynamics simulations of 2D frictionless granular materials to determine whether these systems can be characterized by a single static yield shear stress. We consider boundary-driven planar shear at constant volume and either constant shear force or constant shear velocity. Under steady flow conditions, these two ensembles give similar results for the average shear stress versus shear velocity. However, near jamming it is possible that the shear stress required to initiate shear flow can differ substantially from the shear stress required to maintain flow. We perform several measurements of the shear stress near the initiation and cessation of flow. At fixed shear velocity, we measure the average shear stress Σyv\Sigma_{yv} in the limit of zero shear velocity. At fixed shear force, we measure the minimum shear stress Σyf\Sigma_{yf} required to maintain steady flow at long times. We find that in finite-size systems Σyf>Σyv\Sigma_{yf} > \Sigma_{yv}, which implies that there is a jump discontinuity in the shear velocity from zero to a finite value when these systems begin flowing at constant shear force. However, our simulations show that the difference Σyf−Σyv\Sigma_{yf} - \Sigma_{yv}, and thus the discontinuity in the shear velocity, tend to zero in the infinite system size limit. Thus, our results indicate that in the large system limit, frictionless granular systems are characterized by a single static yield shear stress. We also monitor the short-time response of these systems to applied shear and show that the packing fraction of the system and shape of the velocity profile can strongly influence whether or not the shear stress at short times overshoots the long-time average value.Comment: 7 pages and 6 figure

    Conservation of connectivity of model-space effective interactions under a class of similarity transformation

    Full text link
    Effective interaction operators usually act on a restricted model space and give the same energies (for Hamiltonian) and matrix elements (for transition operators etc.) as those of the original operators between the corresponding true eigenstates. Various types of effective operators are possible. Those well defined effective operators have been shown being related to each other by similarity transformation. Some of the effective operators have been shown to have connected-diagram expansions. It is shown in this paper that under a class of very general similarity transformations, the connectivity is conserved. The similarity transformation between hermitian and non-hermitian Rayleigh-Schr\"{o}dinger perturbative effective operators is one of such transformation and hence the connectivity can be deducted from each other.Comment: 12 preprint page

    Anisotropic Behavior of Knight Shift in Superconducting State of Na_xCoO_2yH_2O

    Full text link
    The Co Knight shift was measured in an aligned powder sample of Na_xCoO_2yH_2O, which shows superconductivity at T_c \sim 4.6 K. The Knight-shift components parallel (K_c) and perpendicular to the c-axis (along the ab plane K_{ab}) were measured in both the normal and superconducting (SC) states. The temperature dependences of K_{ab} and K_c are scaled with the bulk susceptibility, which shows that the microscopic susceptibility deduced from the Knight shift is related to Co-3d spins. In the SC state, the Knight shift shows an anisotropic temperature dependence: K_{ab} decreases below 5 K, whereas K_c does not decrease within experimental accuracy. This result raises the possibility that spin-triplet superconductivity with the spin component of the pairs directed along the c-axis is realized in Na_xCoO_2yH_2O.Comment: 5 pages, 5 figures, to be published in Journal of Physical Society of Japan vol. 75, No.
    • …
    corecore