589 research outputs found
On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater
This paper presents a numerical study on the hydrodynamic performance of a vertical pile-restrained wave energy converter type floating breakwater. The aims are to further understand the characteristics of such integrated system in terms of both wave energy extraction and wave attenuation, and to provide guidance for optimising the shape of the floating breakwater for more energy absorption and less wave transmission at the same time. The numerical model solves the incompressible Navier-Stokes equations for free-surface flows using the particle-in-cell method and incorporates a Cartesian cut cell based strong coupling algorithm for fluid-structure interaction. The numerical model is first validated against an existing experiment, consisting of a rectangular box as the floating breakwater and a power take-off system installed above the breakwater, for the computation of the capture width ratio and wave transmission coefficients. Following that, an optimisation study based on the numerical model is conducted focusing on modifying the shape of the floating breakwater used in the experiment. The results indicate that by changing only the seaward side straight corner of the rectangular box to a small curve corner, the integrated system achieves significantly more wave energy extraction at the cost of only a slight increase in wave transmission
More on volume dependence of spectral weight function
Spectral weight functions are easily obtained from two-point correlation
functions and they might be used to distinguish single-particle from
multi-particle states in a finite-volume lattice calculation, a problem crucial
for many lattice QCD simulations. In previous studies, it is shown that the
spectral weight function for a broad resonance shares the typical volume
dependence of a two-particle scattering state i.e. proportional to in a
large cubic box of size while the narrow resonance case requires further
investigation. In this paper, a generalized formula is found for the spectral
weight function which incorporates both narrow and broad resonance cases.
Within L\"uscher's formalism, it is shown that the volume dependence of the
spectral weight function exhibits a single-particle behavior for a extremely
narrow resonance and a two-particle behavior for a broad resonance. The
corresponding formulas for both and channels are derived. The
potential application of these formulas in the extraction of resonance
parameters are also discussed
Radiative transitions in charmonium from twisted mass lattice QCD
We present a study for charmonium radiative transitions:
, and
using twisted mass lattice QCD gauge
configurations. The single-quark vector form factors for and
are also determined. The simulation is performed at a lattice
spacing of fm and the lattice size is . After
extrapolation of lattice data at nonzero to 0, we compare our results
with previous quenched lattice results and the available experimental values.Comment: typeset with revtex, 15 pages, 11 figures, 4 table
Hydroelastic investigation on a pile breakwater integrated with a flexible tail for long-wave attenuation
A novel concept of wave attenuator is proposed for the defense of long waves, through integrating a flexible tail to the lee-side surface of a pile breakwater. The flexible tail works as a floating blanket made up of hinged blocks, whose scale and stiffness can be easily adjusted. A two-phase-flow numerical model is established based on the open-source computational fluid dynamics (CFD) code OpenFOAM to investigate its wave attenuation performance. Incompressible Navier—Stokes equations are solved in the fluid domain, where an additional computational solid mechanics (CSM) solver is embedded to describe the elastic deformation of the floating tail. The coupling of fluid dynamics and structural mechanics is solved in a full manner to allow assess of wave variation along the deforming body. The accuracy of the numerical model is validated through comparison with experimental data. Effects of the flexible tail on performance of the pile breakwater are investigated systematically. Dynamic behaviours of the tail are examined, and characteristics of its natural frequency are identified. For safety reasons, the wave loads impacting on the main body of the pile breakwater and the stress distribution over the tail are specially examined. It is found that both the length and stiffness of the tail can affect the wave-attenuation performance of the breakwater. A proper choice of the length and stiffness of the tail can greatly improve the long-wave defending capability of the pile breakwater. The maximum stress over the flexible tail can be restrained through optimising the deformation and stiffness of the tail
Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation
Universal quantum error-correction requires the ability of manipulating
entanglement of five or more particles. Although entanglement of three or four
particles has been experimentally demonstrated and used to obtain the extreme
contradiction between quantum mechanics and local realism, the realization of
five-particle entanglement remains an experimental challenge. Meanwhile, a
crucial experimental challenge in multi-party quantum communication and
computation is the so-called open-destination teleportation. During
open-destination teleportation, an unknown quantum state of a single particle
is first teleported onto a N-particle coherent superposition to perform
distributed quantum information processing. At a later stage this teleported
state can be readout at any of the N particles for further applications by
performing a projection measurement on the remaining N-1 particles. Here, we
report a proof-of-principle demonstration of five-photon entanglement and
open-destination teleportation. In the experiment, we use two entangled photon
pairs to generate a four-photon entangled state, which is then combined with a
single photon state to achieve the experimental goals. The methods developed in
our experiment would have various applications e.g. in quantum secret sharing
and measurement-based quantum computation.Comment: 19 pages, 4 figures, submitted for publication on 15 October, 200
Chiglitazar Preferentially Regulates Gene Expression via Configuration-Restricted Binding and Phosphorylation Inhibition of PPAR γ
Type 2 diabetes mellitus is often treated with insulin-sensitizing drugs called thiazolidinediones (TZD), which improve insulin resistance and glycemic control. Despite their effectiveness in treating diabetes, these drugs provide little protection from eminent cardiovascular disease associated with diabetes. Here we demonstrate how chiglitazar, a configuration-restricted non-TZD peroxisome proliferator-activated receptor (PPAR) pan agonist with moderate transcription activity, preferentially regulates ANGPTL4 and PDK4, which are involved in glucose and lipid metabolism. CDK5-mediated phosphorylation at serine 273 (S273) is a unique regulatory mechanism reserved for PPARγ, and this event is linked to insulin resistance in type 2 diabetes mellitus. Our data demonstrates that chiglitazar modulates gene expression differently from two TZDs, rosiglitazone and pioglitazone, via its configuration-restricted binding and phosphorylation inhibition of PPARγ. Chiglitazar induced significantly greater expression of ANGPTL4 and PDK4 than rosiglitazone and pioglitazone in different cell models. These increased expressions were dependent on the phosphorylation status of PPARγ at S273. Furthermore, ChIP and AlphaScreen assays showed that phosphorylation at S273 inhibited promoter binding and cofactor recruitment by PPARγ. Based on these results, activities from pan agonist chiglitazar can be an effective part of a long-term therapeutic strategy for treating type 2 diabetes in a more balanced action among its targeted organs
Single-cell sequencing and multiple machine learning algorithms to identify key T-cell differentiation gene for progression of NAFLD cirrhosis to hepatocellular carcinoma
Introduction: Hepatocellular carcinoma (HCC), which is closely associated with chronicinflammation, is the most common liver cancer and primarily involves dysregulated immune responses in the precancerous microenvironment. Currently, most studies have been limited to HCC incidence. However, the immunopathogenic mechanisms underlying precancerous lesions remain unknown.Methods: We obtained single-cell sequencing data (GSE136103) from two nonalcoholic fatty liver disease (NAFLD) cirrhosis samples and five healthy samples. Using pseudo-time analysis, we systematically identified five different T-cell differentiation states. Ten machine-learning algorithms were used in 81 combinations to integrate the frameworks and establish the best T-cell differentiation-related prognostic signature in a multi-cohort bulk transcriptome analysis.Results: LDHA was considered a core gene, and the results were validated using multiple external datasets. In addition, we validated LDHA expression using immunohistochemistry and flow cytometry.Conclusion: LDHA is a crucial marker gene in T cells for the progression of NAFLD cirrhosis to HCC
- …