424 research outputs found

    The term CAKUT has outlived its usefulness:the case for the defense

    Get PDF
    Congenital anomalies of the kidney and urinary tract form a spectrum of congenital structural disorders that are generally known under the term CAKUT. The term CAKUT was introduced 20 years ago and has been used extensively in literature since. Prof. Woolf has made a plea for abandoning this term in his "case for the prosecution." Here, I advocate for the continued use of CAKUT as an umbrella term for these related congenital kidney and urinary tract abnormalities. I explain why the term CAKUT accurately and usefully defines this group of related structural disorders with prenatal origin and why it makes sense to continue grouping these disorders given accumulating evidence for shared etiology of CAKUT phenotypes and the importance of grouping CAKUT phenotypes in genetic counseling

    Clinical Integration of Genome Diagnostics for Congenital Anomalies of the Kidney and Urinary Tract

    Get PDF
    Revolutions in genetics, epigenetics, and bioinformatics are currently changing the outline of diagnostics and clinical medicine. From a nephrologist's perspective, individuals with congenital anomalies of the kidney and urinary tract (CAKUT) are an important patient category: not only is CAKUT the predominant cause of kidney failure in children and young adults, but the strong phenotypic and genotypic heterogeneity of kidney and urinary tract malformations has hampered standardization of clinical decision making until now. However, patients with CAKUT may benefit from precision medicine, including an integrated diagnostics trajectory, genetic counseling, and personalized management to improve clinical outcomes of developmental kidney and urinary tract defects. In this review, we discuss the present understanding of the molecular etiology of CAKUT and the currently available genome diagnostic modalities in the clinical care of patients with CAKUT. Finally, we discuss how clinical integration of findings from large-scale genetic, epigenetic, and gene-environment interaction studies may improve the prognosis of all individuals with CAKUT

    Drug Repurposing for Rare Diseases

    Get PDF
    Currently, there are about 7000 identified rare diseases, together affecting 10% of the population. However, fewer than 6% of all rare diseases have an approved treatment option, highlighting their tremendous unmet needs in drug development. The process of repurposing drugs for new indications, compared with the development of novel orphan drugs, is a time-saving and cost-efficient method resulting in higher success rates, which can therefore drastically reduce the risk of drug development for rare diseases. Although drug repurposing is not novel, new strategies have been developed in recent years to do it in a systematic and rational way. Here, we review applied methodologies, recent accomplished progress, and the challenges associated in drug repurposing for rare diseases

    Pengembangan Aplikasi Berbasis Android Untuk Sistem Kesejahteraan Sosial Terpadu Kesejahteraan Sosial Kabupaten Jember

    Get PDF
    Validation of the Integrated Social Welfare Data (DTKS) needs to be carried out because the government uses this data as a basis for providing various forms of social assistance. Valid data is one of the efforts so that the social assistance provided is right on target. Jember Regency is one of the districts instructed to validate the data. The University of Jember through the Institute for Research and Community Service (LP2M) is working with the Regional Government of Jember Regency to carry out DTKS validation efforts. This activity then developed an Android-based application that enumerators used to validate in the field. The data used in the application is based on data already owned by the Jember District Social Servic

    Diagnostic Yield of Next-Generation Sequencing in Patients With Chronic Kidney Disease of Unknown Etiology

    Get PDF
    Advances in next-generation sequencing (NGS) techniques, including whole exome sequencing, have facilitated cost-effective sequencing of large regions of the genome, enabling the implementation of NGS in clinical practice. Chronic kidney disease (CKD) is a major contributor to global burden of disease and is associated with an increased risk of morbidity and mortality. CKD can be caused by a wide variety of primary renal disorders. In about one in five CKD patients, no primary renal disease diagnosis can be established. Moreover, recent studies indicate that the clinical diagnosis may be incorrect in a substantial number of patients. Both the absence of a diagnosis or an incorrect diagnosis can have therapeutic implications. Genetic testing might increase the diagnostic accuracy in patients with CKD, especially in patients with unknown etiology. The diagnostic utility of NGS has been shown mainly in pediatric CKD cohorts, while emerging data suggest that genetic testing can also be a valuable diagnostic tool in adults with CKD. In addition to its implications for unexplained CKD, NGS can contribute to the diagnostic process in kidney diseases with an atypical presentation, where it may lead to reclassification of the primary renal disease diagnosis. So far, only a few studies have reported on the diagnostic yield of NGS-based techniques in patients with unexplained CKD. Here, we will discuss the potential diagnostic role of gene panels and whole exome sequencing in pediatric and adult patients with unexplained and atypical CKD

    Model Based Analysis and Test Generation for Flight Software

    Get PDF
    We describe a framework for model-based analysis and test case generation in the context of a heterogeneous model-based development paradigm that uses and combines Math- Works and UML 2.0 models and the associated code generation tools. This paradigm poses novel challenges to analysis and test case generation that, to the best of our knowledge, have not been addressed before. The framework is based on a common intermediate representation for different modeling formalisms and leverages and extends model checking and symbolic execution tools for model analysis and test case generation, respectively. We discuss the application of our framework to software models for a NASA flight mission
    • …
    corecore