4 research outputs found

    Impact of Wall Materials on Physico-Chemical Properties and Stability of Eggplant Peels Anthocyanin Hydrogels

    No full text
    In this study, eggplant peel extract was used to obtain hydrogels. Two experimental variants were realized by varying the wall materials. Whey proteins isolate (WPI), citrus pectin (P), and sodium carboxymethylcellulose (CMCNa) were used as wall materials. The microcapsules were obtained by the gelation technique, followed by freeze-drying in order to obtain powders. Both experimental variants were analyzed in terms of phytochemical content, antioxidant activity, storage stability, and in vitro digestibility. Additionally, confocal microscopy was used to observe the encapsulation of the bioactive compounds from the eggplant peel extract into the selected matrices. The encapsulation efficiency of the powders varied from 64.67 ± 0.68% for variant 1 (V1) to 96.44 ± 3.43% for variant 2 (V2). Both powders presented high bioactive compound content with high antioxidant activity. V2 showed the highest stability within 28 days of storage, but also in the simulated digestive system

    Insights of Sea Buckthorn Extract’s Encapsulation by Coacervation Technique

    No full text
    Sea buckthorn (Hippophae rhamnoides L.) represents a valuable source of biologically active compounds such as carotenoids and polyphenols. High amounts of these substances are found in its fruits, bark, and leaves. However, their bioavailability is limited and must be increased in order to benefit from the properties they exert. Therefore, the purpose of this study was to increase the stability and bioavailability of sea buckthorn fruit’s bioactives. The sea buckthorn’s bioactive compounds were extracted with a solvent combination between glacial acetic acid, acetone, and water on one side and water only on the other side. Afterward, the phytochemicals from the extracts were encapsulated using the coacervation technique, followed by freeze-drying in order to obtain stable powders. The powders were characterized in terms of antioxidant activity, total carotenoids, β-carotene, lycopene, total polyphenol, and total flavonoid content, color, structure, and morphology. The phytochemical stability of the powders and their antioxidant activity was assessed during 270 days of storage at 4 °C. Moreover, the bioavailability of phytochemicals was measured during in vitro simulated digestibility. Our findings provide insights to promote carotenoids and polyphenols from sea buckthorn as bioactive ingredients with multiple purposes

    Advanced Composites Based on Sea Buckthorn Carotenoids for Mayonnaise Enrichment

    No full text
    This study aimed at the extraction and encapsulation of the carotenoids from sea buckthorn fruits and obtaining value-added mayonnaise. First, the carotenoids from sea buckthorn fruits were extracted using ultrasound-assisted extraction. Then, they were microencapsulated through complex coacervation and freeze-drying techniques using different wall material combinations. Two powders were obtained and analyzed in terms of encapsulation efficiency, total carotenoid content, antioxidant activity, stability of phytochemicals and color, morphological structure, and in vitro digestibility. All results pointed out that the carotenoid molecules were successfully encapsulated within the mixture of alginate, agar, and chitosan, with a 61.17 ± 0.89% encapsulation efficiency. To probe the functionality, the powder was added into mayonnaise in 2.5% and 5% amounts. The obtained mayonnaise samples were characterized in terms of phytochemical and antioxidant activity properties with their storage stability and texture, color, and sensory characteristics. A significant increase of total carotenoid content and antioxidant activity compared to the control sample was observed. The addition of powder also led to improved texture by increasing the firmness and adhesion. In addition, the sensory evaluation indicated an improved color and overall acceptability of the value-added mayonnaise. Thus, sea buckthorn extracts may be considered as valuable ingredients for the development of added-value food products

    CO2 supercritical extraction and microencapsulation of oleoresins from rosehip fruits for getting powders with multiple applications

    No full text
    The supercritical fluids extraction (SFE) was used to extract the oleoresins from rosehip, followed by an in-depth phytochemical analysis and the development of two design-customized powders for different food and pharmaceutical applications. The SFE experiments allowed obtaining an oleoresins extraction yield of 11.85%. Two fractions were separated (S40 and S45), with significantly different phytochemical profile (p < 0.05), highlighting the efficiency of extraction of fatty acids in S40 extract, whereas the extraction of polyphenols, phytosterols, carotenoids and polyphenols was favored in S45 extract. The phytochemical profile revealed that the linoleic acid (C18:2) and α-linolenic acid (C18:3) represented approximatively 82% and 58% from the total fatty acid content in S40 and S45, respectively. α-Tocopherol and γ-tocopherol prevailed in both extract fractions, with a higher concentration in S45 (229.66 mg/g dry matter (DM) and 112.36 mg/g DM, respectively), whereas β-sitosterol was the major phytosterol in S45 fraction (118.75 mg/g DM). The S40 fraction was used to design two microencapsulated powders, by combining emulsification, complex coarcevation and freeze-drying. In order to develop new wall materials, with unique properties, the soy protein isolates were used for cross-linked reactions, by using an approach in one step (transglutaminase mediated) (coded as N) and two-steps (heat-induced and transglutaminase mediated) (coded as T). The N powder showed a better phytochemical content, leading to a higher antioxidant activity (5.27 mM Trolox equivalents/g DM), whereas for variant T, the bioactive were apparently doubled encapsulated
    corecore