2 research outputs found

    Structural Basis for Highly Selective Class II Alpha Phosphoinositide-3-Kinase Inhibition

    No full text
    Class II phosphoinositide-3-kinases (PI3Ks) play central roles in cell signaling, division, migration, and survival. Despite evidence that all PI3K class II isoforms serve unique cellular functions, the lack of isoform-selective inhibitors severely hampers the systematic investigation of their potential relevance as pharmacological targets. Here, we report the structural evaluation and molecular determinants for selective PI3K-C2α inhibition by a structure–activity relationship study based on a pteridinone scaffold, leading to the discovery of selective PI3K-C2α inhibitors called PITCOINs. Cocrystal structures and docking experiments supported the rationalization of the structural determinants essential for inhibitor activity and high selectivity. Profiling of PITCOINs in a panel of more than 118 diverse kinases showed no off-target kinase inhibition. Notably, by addressing a selectivity pocket, PITCOIN4 showed nanomolar inhibition of PI3K-C2α and >100-fold selectivity in a general kinase panel. Our study paves the way for the development of novel therapies for diseases related to PI3K-C2α function

    Structural Basis for Highly Selective Class II Alpha Phosphoinositide-3-Kinase Inhibition

    No full text
    Class II phosphoinositide-3-kinases (PI3Ks) play central roles in cell signaling, division, migration, and survival. Despite evidence that all PI3K class II isoforms serve unique cellular functions, the lack of isoform-selective inhibitors severely hampers the systematic investigation of their potential relevance as pharmacological targets. Here, we report the structural evaluation and molecular determinants for selective PI3K-C2α inhibition by a structure–activity relationship study based on a pteridinone scaffold, leading to the discovery of selective PI3K-C2α inhibitors called PITCOINs. Cocrystal structures and docking experiments supported the rationalization of the structural determinants essential for inhibitor activity and high selectivity. Profiling of PITCOINs in a panel of more than 118 diverse kinases showed no off-target kinase inhibition. Notably, by addressing a selectivity pocket, PITCOIN4 showed nanomolar inhibition of PI3K-C2α and >100-fold selectivity in a general kinase panel. Our study paves the way for the development of novel therapies for diseases related to PI3K-C2α function
    corecore