20 research outputs found
Arabidopsis thaliana phytaspase: identification and peculiar properties
Phytaspases are plant cell death-related proteases of the subtilisin-like protease family that possess an unusual aspartate cleavage specificity. Although phytaspase activity is widespread in plants, phytaspase of Arabidopsis thaliana (L.) Heynh. has escaped detection and identification thus far. Here, we show that a single gene (At4 g10540) out of 56 A. thaliana subtilisin-like protease genes encodes a phytaspase. The recombinant phytaspase was overproduced in Nicotiana benthamiana Domin leaves, isolated, and its substrate specificity and properties were characterised. At pH 5.5, at physiological mildly acidic reaction conditions, the Arabidopsis phytaspase was shown to be strictly Asp-specific. The strongly preferred cleavage motifs of the enzyme out of a panel of synthetic peptide substrates were YVAD and IETD, while the VEID-based substrate preferred by the tobacco and rice phytaspases was almost completely resistant to hydrolysis. At neutral pH, however, the Arabidopsis phytaspase could hydrolyse peptide substrates after two additional amino acid residues, His and Phe, in addition to Asp. This observation may indicate that the repertoire of Arabidopsis phytaspase targets could possibly be regulated by the conditions of the cellular environment. Similar to tobacco and rice phytaspases, the Arabidopsis enzyme was shown to accumulate in the apoplast of epidermal leaf cells. However, in stomatal cells Arabidopsis phytaspase was observed inside the cells, possibly co-localising with vacuole. Our study thus demonstrates that the Arabidopsis phytaspase possesses both important similarities with and distinctions from the already known phytaspases, and is likely to be the most divergent member of the phytaspase family
Prothymosin α fragmentation in apoptosis
AbstractWe observed fragmentation of an essential proliferation-related human nuclear protein prothymosin α in the course of apoptosis induced by various stimuli. Prothymosin α cleavage occurred at the DDVD99 motif. In vitro, prothymosin α could be cleaved at D99 by caspase-3 and -7. Caspase hydrolysis disrupted the nuclear localization signal of prothymosin α and abrogated the ability of the truncated protein to accumulate inside the nucleus. Prothymosin α fragmentation may therefore be proposed to disable intranuclear proliferation-related function of prothymosin α in two ways: by cleaving off a short peptide containing important determinants, and by preventing active nuclear uptake of the truncated protein
From structure to function – a family portrait of plant subtilases
Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants.Instituto de Fisiología Vegeta
The tomato subtilase family includes several cell death-related proteinases with caspase specificity
Phytaspases are Asp-specific subtilisin-like plant proteases that have been likened to animal caspases with respect to their regulatory function in programmed cell death (PCD). We identified twelve putative phytaspase genes in tomato that differed widely in expression level and tissue-specific expression patterns. Most phytaspase genes are tandemly arranged on tomato chromosomes one, four, and eight, and many belong to taxon-specific clades, e.g. the P69 clade in the nightshade family, suggesting that these genes evolved by gene duplication after speciation. Five tomato phytaspases (SlPhyts) were expressed in N. benthamiana and purified to homogeneity. Substrate specificity was analyzed in a proteomics assay and with a panel of fluorogenic peptide substrates. Similar to animal caspases, SlPhyts recognized an extended sequence motif including Asp at the cleavage site. Clear differences in cleavage site preference were observed implying different substrates in vivo and, consequently, different physiological functions. A caspase-like function in PCD was confirmed for five of the seven tested phytaspases. Cell death was triggered by ectopic expression of SlPhyts 2, 3, 4, 5, 6 in tomato leaves by agro-infiltration, as well as in stably transformed transgenic tomato plants. SlPhyts 3, 4, and 5 were found to contribute to cell death under oxidative stress conditions
The tomato subtilase family includes several cell death-related proteinases with caspase specificity
Phytaspases are Asp-specific subtilisin-like plant proteases that have been likened to animal caspases with respect to their regulatory function in programmed cell death (PCD). We identified twelve putative phytaspase genes in tomato that differed widely in expression level and tissue-specific expression patterns. Most phytaspase genes are tandemly arranged on tomato chromosomes one, four, and eight, and many belong to taxon-specific clades, e.g. the P69 clade in the nightshade family, suggesting that these genes evolved by gene duplication after speciation. Five tomato phytaspases (SlPhyts) were expressed in N. benthamiana and purified to homogeneity. Substrate specificity was analyzed in a proteomics assay and with a panel of fluorogenic peptide substrates. Similar to animal caspases, SlPhyts recognized an extended sequence motif including Asp at the cleavage site. Clear differences in cleavage site preference were observed implying different substrates in vivo and, consequently, different physiological functions. A caspase-like function in PCD was confirmed for five of the seven tested phytaspases. Cell death was triggered by ectopic expression of SlPhyts 2, 3, 4, 5, 6 in tomato leaves by agro-infiltration, as well as in stably transformed transgenic tomato plants. SlPhyts 3, 4, and 5 were found to contribute to cell death under oxidative stress conditions
Phytaspase Does Not Require Proteolytic Activity for Its Stress-Induced Internalization
Phytaspases differ from other members of the plant subtilisin-like protease family by having rare aspartate cleavage specificity and unusual localization dynamics. Phytaspases are secreted from healthy plant cells but are re-internalized upon perception of death-inducing stresses. Although proteolytic activity is required for the secretion of plant subtilases, its requirement for the retrograde transportation of phytaspases is currently unknown. To address this issue, we employed an approach to complement in trans the externalization of a prodomain-less form of Nicotiana tabacum phytaspase (NtPhyt) with the free prodomain in Nicotiana benthamiana leaf cells. Using this approach, the generation of the proteolytically active NtPhyt and its transport to the extracellular space at a level comparable to that of the native NtPhyt (synthesized as a canonical prodomain-containing precursor protein) were achieved. The application of this methodology to NtPhyt with a mutated catalytic Ser537 residue resulted in the secretion of the inactive, although processed (prodomain-free), protein as well. Notably, the externalized NtPhyt Ser537Ala mutant was still capable of retrograde transportation into plant cells upon the induction of oxidative stress. Our data thus indicate that the proteolytic activity of NtPhyt is dispensable for stress-induced retrograde transport of the enzyme