136 research outputs found

    Relationship between Lipoprotein (a) and cognitive function – Results from the Berlin Aging Study II

    Get PDF
    It has been suggested that an age-related loss of cognitive function might be driven by atherosclerotic effects associated with altered lipid patterns. However, the relationship between Lipoprotein (a) [Lp(a)] and healthy cognitive aging has not yet been sufficiently investigated. For the current analysis we used the cross-sectional data of 1,380 Berlin Aging Study II (BASE-II) participants aged 60 years and older (52.2% women, mean age 68 ± 4 years). We employed the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)-Plus test battery to establish latent factors representing continuous measures of domain specific cognitive functions. Regression models adjusted for APOE genotypes, lipid parameters and other risk factors for cognitive impairment were applied to assess the association between Lp(a) and performance in specific cognitive domains. Men within the lowest Lp(a)-quintile showed better cognitive performance in the cognitive domain executive functions and processing speed (p = 0.027). No significant results were observed in women. The results of the current analysis of predominantly healthy BASE-II participants point towards an association between low Lp(a) concentrations and better cognitive performance. However, evidence for this relationship resulting from the current analysis and the employment of a differentiated cognitive assessment is rather weak

    Caenorhabditis elegans cisRED: a catalogue of conserved genomic elements

    Get PDF
    The availability of completely sequenced genomes from eight species of nematodes has provided an opportunity to identify novel cis-regulatory elements in the promoter regions of Caenorhabditis elegans transcripts using comparative genomics. We determined orthologues for C. elegans transcripts in C. briggsae, C. remanei, C. brenneri, C. japonica, Pristionchus pacificus, Brugia malayi and Trichinella spiralis using the WABA alignment algorithm. We pooled the upstream region of each transcript in C. elegans with the upstream regions of its orthologues and identified conserved DNA sequence elements by de novo motif discovery. In total, we discovered 158 017 novel conserved motifs upstream of 3847 C. elegans transcripts for which three or more orthologues were available, and identified 82% of 44 experimentally proven regulatory elements from ORegAnno. We annotated 26% of the motifs as similar to known binding sequences of transcription factors from ORegAnno, TRANSFAC and JASPAR. This is the first catalogue of annotated conserved upstream elements for nematodes and can be used to find putative regulatory elements, improve gene models, discover novel RNA genes, and understand the evolution of transcription factors and their binding sites in phylum Nematoda. The annotated motifs provide novel binding site candidates for both characterized transcription factors and orthologues of characterized mammalian transcription factors

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing

    Get PDF
    Foxa2 (HNF3β) is a one of three, closely related transcription factors that are critical to the development and function of the mouse liver. We have used chromatin immunoprecipitation and massively parallel Illumina 1G sequencing (ChIP–Seq) to create a genome-wide profile of in vivo Foxa2-binding sites in the adult liver. More than 65% of the ∼11.5 k genomic sites associated with Foxa2 binding, mapped to extended gene regions of annotated genes, while more than 30% of intragenic sites were located within first introns. 20.5% of all sites were further than 50 kb from any annotated gene, suggesting an association with novel gene regions. QPCR analysis demonstrated a strong positive correlation between peak height and fold enrichment for Foxa2-binding sites. We measured the relationship between Foxa2 and liver gene expression by overlapping Foxa2-binding sites with a SAGE transcriptome profile, and found that 43.5% of genes expressed in the liver were also associated with Foxa2 binding. We also identified potential Foxa2-interacting transcription factors whose motifs were enriched near Foxa2-binding sites. Our comprehensive results for in vivo Foxa2-binding sites in the mouse liver will contribute to resolving transcriptional regulatory networks that are important for adult liver function
    corecore