5 research outputs found

    Genes flanking Xist in mouse and human are separated on the X chromosome in American marsupials

    Get PDF
    X inactivation, the transcriptional silencing of one of the two X chromosomes in female mammals, achieves dosage compensation of X-linked genes relative to XY males. In eutherian mammals X inactivation is regulated by the X-inactive specific transcript (Xist), a cis-acting non-coding RNA that triggers silencing of the chromosome from which it is transcribed. Marsupial mammals also undergo X inactivation but the mechanism is relatively poorly understood. We set out to analyse the X chromosome in Monodelphis domestica and Didelphis virginiana, focusing on characterizing the interval defined by the Chic1 and Slc16a2 genes that in eutherians flank the Xist locus. The synteny of this region is retained on chicken chromosome 4 where other loci belonging to the evolutionarily ancient stratum of the human X chromosome, the so-called X conserved region (XCR), are also located. We show that in both M. domestica and D. virginiana an evolutionary breakpoint has separated the Chic1 and Slc16a2 loci. Detailed analysis of opossum genomic sequences revealed linkage of Chic1 with the Lnx3 gene, recently proposed to be the evolutionary precursor of Xist, and Fip1, the evolutionary precursor of Tsx, a gene located immediately downstream of Xist in eutherians. We discuss these findings in relation to the evolution of Xist and X inactivation in mammals

    Receiver-Operating Characteristic Analysis for Evaluating the Severity of the Condition of Preterm Children Depending on Perinatal Risk Factors, Timing, and Mode of Delivery

    No full text
    The aim of this study was to assess the role of the receiver-operating characteristic (ROC) analysis for evaluating the severity of the condition of preterm children, depending on perinatal risk (PR) factors, timing, and mode of delivery. In order to identify the thresholds for "intrapartum gain" of risk factors for timely selection of mode of delivery, we performed a comparative ROC analysis of the severity of the state of children at birth according to the Apgar score (AS), from 1 point in the first minute to 7 points in the fifth minute of life. The analysis of indicators of perinatal mortality (PM) and perinatal morbidity (PMb) shows a statistically significant difference (P<0.05) in the selection of the priority mode of delivery for women with premature birth during all analyzed gestation ages, depending on PR: frequency of PM and PMb is lower among pregnant women with a high risk who gave birth to premature babies delivered by C-section

    Deoxycholic acid as a molecular scaffold for tyrosyl-DNA phosphodiesterase 1 inhibition: A synthesis, structure–activity relationship and molecular modeling study

    No full text
    Para-Bromoanilides of deoxycholic acid with various functional groups on the steroid scaffold were designed as promising tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibitors. Tdp1 is a DNA repair enzyme, involved in removing DNA damage caused by topoisomerase I poisons; an important class of anticancer drugs. Thus, reducing the activity of Tdp1 can increase the efficacy of anticancer drugs in current use. Inhibitory activity in the low micromolar and submicromolar concentrations was observed with 3,12-dimethoxy para-bromoanilide 17 being the most active with an IC50 value of 0.27 μM. The activity of N-methyl para-bromoanilides was 3–4.8 times lower than of the corresponding para-bromoanilides. Increased potency of the ligands was seen with higher molecular weight and log P values. The ligands were evaluated for their cytotoxic potential in a panel of tumor cell lines; all were nontoxic to the A549 pulmonary adenocarcinoma cell line. However, derivatives containing a hydroxyl group at the 12th position were more toxic than their 12-hydroxyl group counterparts (acetoxy-, oxo- and methoxy- group) against HCT-116 human colon and HepG2 hepatocellular carcinomas. In addition, an N-methyl substitution led to an increase in toxicity for the HCT-116 and HepG2 cell lines. The excellent activity as well as low cytotoxicity, derivative 17 can be considered as a lead compound for further development

    Novel Semisynthetic Derivatives of Bile Acids as Effective Tyrosyl-DNA Phosphodiesterase 1 Inhibitors

    No full text
    An Important task in the treatment of oncological and neurodegenerative diseases is the search for new inhibitors of DNA repair system enzymes. Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is one of the DNA repair system enzymes involved in the removal of DNA damages caused by topoisomerase I inhibitors. Thus, reducing the activity of Tdp1 can increase the effectiveness of currently used anticancer drugs. We describe here a new class of semisynthetic small molecule Tdp1 inhibitors based on the bile acid scaffold that were originally identified by virtual screening. The influence of functional groups of bile acids (hydroxy and acetoxy groups in the steroid framework and amide fragment in the side chain) on inhibitory activity was investigated. In vitro studies demonstrate the ability of the semisynthetic derivatives to effectively inhibit Tdp1 with IC50 up to 0.29 µM. Furthermore, an excellent fit is realized for the ligands when docked into the active site of the Tdp1 enzyme

    Genes flanking Xist in mouse and human are separated on the X chromosome in American marsupials. Chromosome Res

    No full text
    X inactivation, the transcriptional silencing of one of the two X chromosomes in female mammals, achieves dosage compensation of X-linked genes relative to XY males. In eutherian mammals X inactivation is regulated by the X-inactive specific transcript (Xist), a cis-acting non-coding RNA that triggers silencing of the chromosome from which it is transcribed. Marsupial mammals also undergo X inactivation but the mechanism is relatively poorly understood. We set out to analyse the X chromosome in Monodelphis domestica and Didelphis virginiana, focusing on characterizing the interval defined by the Chic1 and Slc16a2 genes that in eutherians flank the Xist locus. The synteny of this region is retained on chicken chromosome 4 where other loci belonging to the evolutionarily ancient stratum of the human X chromosome, the so-called X conserved region (XCR), ar
    corecore