3 research outputs found

    Assessment of pre-treatment techniques for coarse printed circuit boards (PCBs) recycling

    No full text
    Waste electrical and electronic equipment or e-waste generation has been skyrocketing over the last decades. This poses waste management and value recovery challenges, especially in developing countries. Printed circuit boards (PCBs) are mainly employed in value recovery operations. Despite the high energy costs of generating crushed and milled particles of the order of several microns, those are employed in conventional hydrometallurgical techniques. Coarse PCB pieces (of order a few centimetres) based value recovery operations are not reported at the industrial scale as the complexities of the internal structure of PCBs limit efficient metal and non-metal separation. Since coarse PCB particles’ pre-treatment is of paramount importance to enhance metal and non-metal separations, thermal, mechanical, chemical and electrical pre-treatment techniques were extensively studied. It is quite evident that a single pre-treatment technique does not result in complete metal liberation and therefore several pre-treatment flowsheets were formulated for coarse PCB particles. Thermal, mechanical and chemical pre-treatments integrated flowsheets were derived and such flowsheets are seldom reported in the e-waste literature. The potential flowsheets need to be assessed considering socio-techno-economic considerations to yield the best available technologies (BAT). In the wider context, the results of this work could be useful for achieving the United Nations sustainable development goals

    Recovery potential of rare earth elements (REEs) from the gem mining waste of Sri Lanka:A case study for mine waste management

    No full text
    Sri Lanka is one of the wealthiest countries in terms of gems. Therefore, gem mining is extensively carried out in many areas of Sri Lanka, including districts such as Ratnapura, Monaragala, Matale, and Kalutara. During the mining process, only valuable gemstones are collected, and the remaining gravel fraction with many heavy minerals is discarded. Therefore, the gem mining industry produces a large amount of waste that is mainly used only for backfilling. To sustainably manage this waste stream, gem mining waste collected from a gem pit at Wagawatta in the Kalutara district in Sri Lanka was investigated for value recovery, specifically for rare-earth elements (REEs). The gem-bearing alluvial layer contained 0.3% rare-earth oxide (REO) that could easily be upgraded up to 2.8% (LREEs = 94%) with wet sieving and subsequent density separation via a shaking table. Therefore, the concentrates of gem mine tailings with REE-bearing minerals have the potential to be a secondary source for LREEs. The organic-rich clay layer underlying the gem-bearing alluvial layer contained 0.6% REO with 49% HREEs, including Gd, Dy, Er, Yb, and especially Y enrichments. Detailed explorations are thus necessary to assess the REE potential in Sri Lanka’s gem mining waste, and value recovery flowsheets should be subsequently developed to economically extract REEs. In addition, the presence of high U concentrations (800 mg/kg) in the concentrated samples could be alarming when considering the health and safety of the people engaged in gem mining. This aspect also requires detailed research studies
    corecore