16 research outputs found

    Characterization of the behavior of carotenoids from pitanga (Eugenia uniflora) and buriti (Mauritia flexuosa) during microemulsion production and in a dynamic gastrointestinal system

    Get PDF
    Uncommon tropical fruits are emerging as raw-material for new food products with health benefits. This work aimed at formulating and processing microemulsions from pitanga (Eugenia uniflora) and buriti (Mauritia flexuosa) fruits, since they are very rich in carotenoids (particularly lycopene and -carotene), in order to encapsulate and increase carotenoids bioaccessibility. Pitanga and buriti microemulsions were produced by applying a direct processing (high-speed homogenization at 15,000 rpm and ultrasound with 20 kHz probe at 40% amplitude) of the whole pulp together with surfactant (Tween 80 or Whey Protein Isolate at 2%) and corn oil (5%). All treatments (HSHUS for 04, 40, 44, 48 minmin) applied were able to increase the amount of carotenoid released. However, the processing also decreased the total amount of carotenoids in the whole pulp of studied fruits. The impact of processing during microemulsion production was not severe. The overall data suggest that the presence of surfactant and oil during processing may protect the carotenoids in fruits and microemulsions. Final recovery of total carotenoids, after passing the samples through a dynamic gastrointestinal system that simulates the human digestion, was higher for microemulsions than for whole pulps. High losses of total carotenoids in buriti and -carotene and lycopene in pitanga occurred during jejunum and ileum phases. The present work confirms that it is possible to increase -carotene and lycopene bioaccessibility from fruits by directly processing microemulsions (p<0.01).This work was supported by the São Paulo Research Foundation—FAPESP through research funding [Grant #2015/15507-9] and Ph.D. scholarship for Paulo Berni [Grant #2014/15119-6] and a Research Internships Abroad (BEPE) support [Grant #2016/13355-0]. The author Ana C. Pinheiro is recipient of a fellowship from the Portuguese Foundation for Science and Technology (FCT) [Grant SFRH/BPD/101181/2014]info:eu-repo/semantics/publishedVersio

    Purification and characterization of antioxidant peptides from cooked eggs using a dynamic in vitro gastrointestinal model in vascular smooth muscle A7r5 cells

    No full text
    Antioxidant peptides from eggs: more active upon digestion Chicken eggs are a major source of dietary proteins, and can be used to produce antioxidant peptides, safer alternatives to synthetic antioxidant drugs. Jianping Wu and co-workers at University of Alberta, Canada, looked into how digestion of cooked eggs in the stomach and intestines could affect the antioxidant activity. Using a simulated model of human digestion, they separated the digests and identified the most active antioxidant peptides, likely released from ovalbumin—the main protein in egg white—by pepsin, the essential digestive enzyme in the stomach. These findings show that digestion of cooked eggs breaks down egg proteins to more potent antioxidant peptides, suggesting that consumption of eggs may help protect human body against oxidative stress
    corecore