2 research outputs found
A Study of Generative Large Language Model for Medical Research and Healthcare
There is enormous enthusiasm and concerns in using large language models
(LLMs) in healthcare, yet current assumptions are all based on general-purpose
LLMs such as ChatGPT. This study develops a clinical generative LLM,
GatorTronGPT, using 277 billion words of mixed clinical and English text with a
GPT-3 architecture of 20 billion parameters. GatorTronGPT improves biomedical
natural language processing for medical research. Synthetic NLP models trained
using GatorTronGPT generated text outperform NLP models trained using
real-world clinical text. Physicians Turing test using 1 (worst) to 9 (best)
scale shows that there is no significant difference in linguistic readability
(p = 0.22; 6.57 of GatorTronGPT compared with 6.93 of human) and clinical
relevance (p = 0.91; 7.0 of GatorTronGPT compared with 6.97 of human) and that
physicians cannot differentiate them (p < 0.001). This study provides insights
on the opportunities and challenges of LLMs for medical research and
healthcare
A large language model for electronic health records
Abstract There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI systems utilizing clinical narratives. However, there are few clinical language models, the largest of which trained in the clinical domain is comparatively small at 110 million parameters (compared with billions of parameters in the general domain). It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured EHRs. In this study, we develop from scratch a large clinical language model—GatorTron—using >90 billion words of text (including >82 billion words of de-identified clinical text) and systematically evaluate it on five clinical NLP tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), and medical question answering (MQA). We examine how (1) scaling up the number of parameters and (2) scaling up the size of the training data could benefit these NLP tasks. GatorTron models scale up the clinical language model from 110 million to 8.9 billion parameters and improve five clinical NLP tasks (e.g., 9.6% and 9.5% improvement in accuracy for NLI and MQA), which can be applied to medical AI systems to improve healthcare delivery. The GatorTron models are publicly available at: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og