2 research outputs found

    SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion

    Get PDF
    Abstract: The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era

    Earthquake Damage Repair Loss Estimation in New Zealand: What Other Variables Are Essential Based on Experts’ Opinions?

    No full text
    Major earthquakes can cause extensive damage to buildings and alter both the natural and built environments. Accurately estimating the financial impact from these events is complex, and the damage is not always visible to the naked eye. PACT, SLAT, and HAZUS are some of the computer-based tools designed to predict probable damage before an earthquake. However, there are no identifiable models built for post-earthquake use. This paper focuses on verifying the significance and usage of variables that specifically need to be considered for the post-earthquake cost estimation of earthquake damage repair work (CEEDRW). The research was conducted using a questionnaire survey involving 92 participants who have experience in cost estimating earthquake damage repair work in New Zealand. The Weighted Average, Relative Importance Index (RII), and Exploratory Factor Analysis were used to analyse the data. The research verified that eleven major variables that are significant to the CEEDRW and should be incorporated to cost estimation models. Verified variables can be used to develop a post-earthquake repair cost estimation tool and can be used to improve the pre-earthquake loss prediction tools
    corecore