852 research outputs found
Clustering outdoor soundscapes using fuzzy ants
A classification algorithm for environmental sound recordings or "soundscapes" is outlined. An ant clustering approach is proposed, in which the behavior of the ants is governed by fuzzy rules. These rules are optimized by a genetic algorithm specially designed in order to achieve the optimal set of homogeneous clusters. Soundscape similarity is expressed as fuzzy resemblance of the shape of the sound pressure level histogram, the frequency spectrum and the spectrum of temporal fluctuations. These represent the loudness, the spectral and the temporal content of the soundscapes. Compared to traditional clustering methods, the advantages of this approach are that no a priori information is needed, such as the desired number of clusters, and that a flexible set of soundscape measures can be used. The clustering algorithm was applied to a set of 1116 acoustic measurements in 16 urban parks of Stockholm. The resulting clusters were validated against visitor's perceptual measurements of soundscape quality
Simple 3D printed stainless steel microreactors for online mass spectrometric analysis
A simple flow chemistry microreactor with an electrospray ionization tip for real time mass spectrometric reaction monitoring is introduced. The microreactor was fabricated by a laser-based additive manufacturing technique from acid-resistant stainless steel 316L. The functionality of the microreactor was investigated by using an inverse electron demand Diels-Alder and subsequent retro Diels-Alder reaction for testing. Challenges and problems encountered are discussed and improvements proposed. Adsorption of reagents to the rough stainless steel channel walls, short length of the reaction channel, and making a proper ESI tip present challenges, but the microreactor is potentially useful as a disposable device.Peer reviewe
Search for More Declarativity
Good tree search algorithms are a key requirement for inference
engines of rule languages. As Prolog exemplifies, inference engines
based on traditional uninformed search methods with their well-known
deficiencies are prone to compromise declarativity, the primary concern
of rule languages. The paper presents a new family of uninformed search
algorithms that combine the advantages of the traditional ones while
avoiding their shortcomings. Moreover, the paper introduces a formal
framework based on partial orderings, which allows precise and elegant
analysis of such algorithms
Schwinger Terms and Cohomology of Pseudodifferential Operators
We study the cohomology of the Schwinger term arising in second quantization
of the class of observables belonging to the restricted general linear algebra.
We prove that, for all pseudodifferential operators in 3+1 dimensions of this
type, the Schwinger term is equivalent to the ``twisted'' Radul cocycle, a
modified version of the Radul cocycle arising in non-commutative differential
geometry. In the process we also show how the ordinary Radul cocycle for any
pair of pseudodifferential operators in any dimension can be written as the
phase space integral of the star commutator of their symbols projected to the
appropriate asymptotic component.Comment: 19 pages, plain te
Microstructural Evolution of Secondary Phases in the Cast Duplex Stainless Steels CD3MN and CD3MWCuN
The isothermal formation behavior of secondary phases in two types of duplex stainless steels (DSS), CD3MN and CD3MWCuN, was characterized. Samples were heat treated from 1 minute to 30 days at temperatures from 700°C to 900°C. Small carbide (M23C6) and nitride (Cr2N) precipitates, together with the intermetallic phases sigma and chi, were observed using scanning electron microscopy (SEM) and confirmed by transmission electron microscopy (TEM) analyses. Based on SEM analysis, time-temperature-transformation (TTT) curves for the sigma and chi phases were determined by measuring their volume fractions from backscattered electron micrographs of heat-treated and quenched sample cross sections. Resulting TTT curves showed that the maximum formation temperature for chi is lower than that for sigma, while the time to reach 1 vol pct formation is much less for sigma than it is for chi. The thermodynamic driving forces associated with the sigma and chi formation were assessed using Thermo-Calc
Formation and control of electron molecules in artificial atoms: Impurity and magnetic-field effects
Interelectron interactions and correlations in quantum dots can lead to
spontaneous symmetry breaking of the self-consistent mean field resulting in
formation of Wigner molecules. With the use of spin-and-space unrestricted
Hartree-Fock (sS-UHF) calculations, such symmetry breaking is discussed for
field-free conditions, as well as under the influence of an external magnetic
field. Using as paradigms impurity-doped (as well as the limiting case of
clean) two-electron quantum dots (which are analogs to helium-like atoms), it
is shown that the interplay between the interelectron repulsion and the
electronic zero-point kinetic energy leads, for a broad range of impurity
parameters, to formation of a singlet ground-state electron molecule,
reminiscent of the molecular picture of doubly-excited helium. Comparative
analysis of the conditional probability distributions for the sS-UHF and the
exact solutions for the ground state of two interacting electrons in a clean
parabolic quantum dot reveals that both of them describe formation of an
electron molecule with similar characteristics. The self-consistent field
associated with the triplet excited state of the two-electron quantum dot
(clean as well as impurity-doped) exhibits symmetry breaking of the Jahn-Teller
type, similar to that underlying formation of nonspherical open-shell nuclei
and metal clusters. Furthermore, impurity and/or magnetic-field effects can be
used to achieve controlled manipulation of the formation and pinning of the
discrete orientations of the Wigner molecules. Impurity effects are futher
illustrated for the case of a quantum dot with more than two electrons.Comment: Latex/Revtex, 10 pages with 4 gif figures. Small changes to explain
the difference between Wigner and Jahn-Teller electron molecules. A complete
version of the paper with high quality figures inside the text is available
at http://shale.physics.gatech.edu/~costas/qdhelium.html For related papers,
see http://www.prism.gatech.edu/~ph274c
Relativistic Heavy--Ion Collisions in the Dynamical String--Parton Model
We develop and extend the dynamical string parton model. This model, which is
based on the salient features of QCD, uses classical Nambu-Got\=o strings with
the endpoints identified as partons, an invariant string breaking model of the
hadronization process, and interactions described as quark-quark interactions.
In this work, the original model is extended to include a phenomenological
quantization of the mass of the strings, an analytical technique for treating
the incident nucleons as a distribution of string configurations determined by
the experimentally measured structure function, the inclusion of the gluonic
content of the nucleon through the introduction of purely gluonic strings, and
the use of a hard parton-parton interaction taken from perturbative QCD
combined with a phenomenological soft interaction. The limited number of
parameters in the model are adjusted to and -- data. Utilizing
these parameters, the first calculations of the model for -- and
-- collisions are presented and found to be in reasonable agreement with
a broad set of data.Comment: 26 pages of text with 23 Postscript figures placed in tex
Materials for Sustainable Nuclear Energy - The Strategic Research Agenda (SRA) of the Joint Programme on Nuclear Materials (JPNM) of the European Energy Research Alliance (EERA)
This Strategic Research Agenda (SRA) has been prepared by the EERA-JPNM, based on a wide consultation with the scientific and industrial community involved, to identify the research lines to be pursued in the EU to ensure that suitable structural and fuel materials are available for the design, licensing, construction and safe long-term operation of GenIV nuclear systems.
Three Grand Challenges have been identified, namely: (i) Elaborate design correlations, assessment and test procedures for the structural and fuel materials that have been selected for the demonstrators under the service conditions expected; (ii) Develop physical models coupled to advanced microstructural characterization to achieve high-level understanding and predictive capability; (iii) Develop innovative materials solutions and fabrication processes of industrial application to achieve superior materials properties, to increase safety and improve efficiency and economy.
For structural materials, the requirement of 60 years design lifetime for non-replaceable components is in perspective the most demanding requirement, which includes under its umbrella several issues related with the reasonable prediction of long-term degradation processes: high temperature processes (creep, fatigue, thermal ageing), compatibility with âespecially- heavy liquid metal and helium coolants, and effects of low flux prolonged irradiation, with emphasis on welded components in all cases. In terms of testing, there is a need for standardization, especially for sub-size and miniature specimens. The modelling, supported by microstructural characterization, has as its main objective the development of suitable microstructure evolution models to be used as input to models for the mechanical behaviour under irradiation and at high temperature, eventually linking with fracture mechanics. Specific developments are required for coolant compatibility models, as well as for models in support of the use of charged particle irradiation for the screening of new materials solutions, such as those listed above.
Concerning fuel materials, the properties and processes that govern its behaviour in pile, on which research effort is focused, are: margin to melting (establishment of phase diagrams and evolution of thermal properties), atomic transport properties and ensuing microstructural evolution, fission product (non-gaseous) and helium (gas) behaviour and transport, mechanical properties (their evolution, subsequent fragmentation and cracking, fuel-cladding mechanical interaction), and compatibility with cladding and coolant (internal cladding corrosion, chemical interactions especially in case of severe accident). These are all addressed from both an experimental and a modelling perspective.
Besides the obvious need of adequate financial resources in order to address the research problems outlined in this SRA, as well as the necessary corollaries, four recommendations emerge that this document is intended to bring to the attention of stake-holders, particularly decision-makers:
R1: Data from materials property measurements after exposure to relevant conditions are the essential ingredient for robust design curves and rules. Plenty of data were produced in the past that are now de facto unusable; this is either because they are covered by confidentiality or because they were not properly archived. Correct data management to guarantee availability for future re-assessment is therefore essential and should be encouraged and fostered. In particular, financially supported policies to foster data sharing and encourage old data disclosure should be implemented.
R2: Some infrastructures are absolutely essential to enable the correct qualification of nuclear materials, not only irradiation facilities, but also suitable âhotâ cells where active materials can be safely handled and tested, nuclearized characterization techniques, loops and pools for compatibility experiments, etc. They are also crucial for education and training of young researchers and operators. These infrastructures are costly to build and maintain. Other research facilities are, on the other hand, more common and sometimes redundant. A rational and harmonised, pan-European management of infrastructures, based on joint programming, including trans-national infrastructure renewal planning and a scheme for facility sharing and exploitation, would be highly desirable and, at the end of the day, beneficial for all.
R3: International cooperation with non-EU countries where research on nuclear materials is pursued can be very valuable for Europe. Quite clearly, the goals of this cooperation are in the end the same as in the case of internal European cooperation, namely coordination of activities, sharing of data, and access to infrastructures. Currently, however, the instruments available in Europe for international cooperation are not sufficiently attractive to motivate significant cooperation with non-EU researchers. Efforts should be made to improve their attractiveness and ease of access. International organisations such as OECD.NEA, IAEA, but also Euratom and JRC for the connection with GIF, have here a crucial role.
R4: The nuclear materials research community in Europe is currently strongly integrated and engaged in thriving collaboration, in a bottom-up sense. This is in contrast with the inadequacy of the top-down instruments offered to make this integration efficient and functional. This SRA is largely the result of matching bottom-up research proposals with top-down strategies. The appropriate instrument to allow this community to deliver according to the SRA goals should provide the conditions to implement the agreed research agenda and to set up suitable E&T&M schemes that allow knowledge, data, and facility sharing. Since the financial support of Euratom will never be sufficient, earmarked funding from the MS dedicated to support integrated research on nuclear materials is crucial. In this sense, a co-fund instrument, such as a European Joint Programme, seems to be most suitable.JRC.G.I.4-Nuclear Reactor Safety and Emergency Preparednes
- âŠ