114 research outputs found

    Metformin reverses development of pulmonary hypertension via aromatase inhibition

    Get PDF
    Females are more susceptible to pulmonary arterial hypertension than males, although the reasons remain unclear. The hypoglycemic drug, metformin, is reported to have multiple actions, including the inhibition of aromatase and stimulation of AMP-activated protein kinase. Inhibition of aromatase using anastrazole is protective in experimental pulmonary hypertension but whether metformin attenuates pulmonary hypertension through this mechanism remains unknown. We investigated whether metformin affected aromatase activity and if it could reduce the development of pulmonary hypertension in the sugen 5416/hypoxic rat model. We also investigated its influence on proliferation in human pulmonary arterial smooth muscle cells. Metformin reversed right ventricular systolic pressure, right ventricular hypertrophy, and decreased pulmonary vascular remodeling in the rat. Furthermore, metformin increased rat lung AMP-activated protein kinase signaling, decreased lung and circulating estrogen levels, levels of aromatase, the estrogen metabolizing enzyme; cytochrome P450 1B1 and its transcription factor; the aryl hydrocarbon receptor. In human pulmonary arterial smooth muscle cells, metformin decreased proliferation and decreased estrogen synthesis by decreasing aromatase activity through the PII promoter site of Cyp19a1. Thus, we report for the first time that metformin can reverse pulmonary hypertension through inhibition of aromatase and estrogen synthesis in a manner likely to be mediated by AMP-activated protein kinase

    Influence of 2-methoxyestradiol and sex on hypoxia-induced pulmonary hypertension and hypoxia-inducible factor‐1‐α

    Get PDF
    Background: Women are at greater risk of developing pulmonary arterial hypertension, with estrogen and its downstream metabolites playing a potential role in the pathogenesis of the disease. Hypoxia‐inducible factor‐1‐α (HIF1α) is a pro‐proliferative mediator and may be involved in the development of human pulmonary arterial hypertension. The estrogen metabolite 2‐methoxyestradiol (2ME2) has antiproliferative properties and is also an inhibitor of HIF1α. Here, we examine sex differences in HIF1α signaling in the rat and human pulmonary circulation and determine if 2ME2 can inhibit HIF1α in vivo and in vitro. Methods and Results: HIF1α signaling was assessed in male and female distal human pulmonary artery smooth muscle cells (hPASMCs), and the effects of 2ME2 were also studied in female hPASMCs. The in vivo effects of 2ME2 in the chronic hypoxic rat (male and female) model of pulmonary hypertension were also determined. Basal HIF1α protein expression was higher in female hPASMCs compared with male. Both factor‐inhibiting HIF and prolyl hydroxylase‐2 (hydroxylates HIF leading to proteosomal degradation) protein levels were significantly lower in female hPASMCs when compared with males. In vivo, 2ME2 ablated hypoxia‐induced pulmonary hypertension in male and female rats while decreasing protein expression of HIF1α. 2ME2 reduced proliferation in hPASMCs and reduced basal protein expression of HIF1α. Furthermore, 2ME2 caused apoptosis and significant disruption to the microtubule network. Conclusions: Higher basal HIF1α in female hPASMCs may increase susceptibility to developing pulmonary arterial hypertension. These data also demonstrate that the antiproliferative and therapeutic effects of 2ME2 in pulmonary hypertension may involve inhibition of HIF1α and/or microtubular disruption in PASMCs

    Role of the aryl hydrocarbon receptor in Sugen 5416-induced experimental pulmonary hypertension

    Get PDF
    Rationale: Rats dosed with the vascular endothelial growth factor (VEGF) inhibitor Sugen 5416 (Su), placed in hypoxia then restored to normoxia has become a widely used model of pulmonary arterial hypertension (PAH). The mechanism by which Su exaccerbates pulmonary hypertension is, however, unclear. Objectives: We investigated Su-activation of the aryl hydrocarbon receptor (AhR) in patient human pulmonary arterial smooth muscle cells (hPASMCs) and patient blood outgrowth endothelial cells (BOECs). We also examined the effect of AhR on aromatase and estrogen levels in the lung. Methods, Measurements and Main Results: Protein and mRNA analysis demonstrated that CYP1A1 was very highly induced in the lungs of Su/hypoxic (Su/Hx) rats. The AhR antagonist CH223191 (8mg/kg/day) reversed the development of PAH in this model in vivo and normalized lung CYP1A1 expression. Increased lung aromatase and estrogen levels in Su/Hx rats were also normalized by CH223191 as was AhR nuclear translocator (ARNT [HIF-1β]) which is shared by HIF-1α and AhR. Su reduced HIF1α expression in hPASMCs. Su induced proliferation in BOECs and increased apoptosis in human pulmonary microvascular endothelial cells (hPMECs) and also induced translocation of AhR to the nucleus in hPASMCs. Under normoxic conditions, hPASMCs do not proliferate to Su. However when grown in hypoxia (1%) Su induced hPASMC proliferation. Conclusion: In combination with hypoxia, Su is proliferative in patient hPASMCs and patient BOECs and Su/Hx-induced PAH in rats may be facilitated by AhR-induced CYP1A1, ARNT and aromatase. Inhibition of the AhR receptor may be a novel approach to the treatment of pulmonary hypertension

    The serotonin transporter promotes a pathological estrogen metabolic pathway in pulmonary hypertension via cytochrome P450 1B1 pulmonary circulation

    Get PDF
    Pulmonary arterial hypertension (PAH) is a devastating vasculopathy that predominates in women and has been associated with dysregulated estrogen and serotonin signaling. Overexpression of the serotonin transporter (SERT+) in mice results in an estrogen-dependent development of pulmonary hypertension (PH). Estrogen metabolism by cytochrome P450 1B1 (CYP1B1) contributes to the pathogenesis of PAH, and serotonin can increase CYP1B1 expression in human pulmonary arterial smooth muscle cells (hPASMCs). We hypothesized that an increase in intracellular serotonin via increased SERT expression may dysregulate estrogen metabolism via CYP1B1 to facilitate PAH. Consistent with this hypothesis, we found elevated lung CYP1B1 protein expression in female SERT+ mice accompanied by PH, which was attenuated by the CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS). Lungs from female SERT+ mice demonstrated an increase in oxidative stress that was marked by the expression of 8-hydroxyguanosine; however, this was unaffected by CYP1B1 inhibition. SERT expression was increased in monocrotaline-induced PH in female rats; however, TMS did not reverse PH in monocrotaline-treated rats but prolonged survival. Stimulation of hPASMCs with the CYP1B1 metabolite 16α-hydroxyestrone increased cellular proliferation, which was attenuated by an inhibitor (MPP) of estrogen receptor alpha (ERα) and a specific ERα antibody. Thus, increased intracellular serotonin caused by increased SERT expression may contribute to PAH pathobiology by dysregulation of estrogen metabolic pathways via increased CYP1B1 activity. This promotes PASMC proliferation by the formation of pathogenic metabolites of estrogen that mediate their effects via ERα. Our studies indicate that targeting this pathway in PAH may provide a promising antiproliferative therapeutic strategy

    Sex-dependent influence of endogenous estrogen in pulmonary hypertension

    Get PDF
    Rationale: The incidence of pulmonary arterial hypertension (PAH) is greater in women suggesting estrogens may play a role in the disease pathogenesis. Experimentally, in males exogenously administered estrogen can protect against PH; however in models that display female susceptibility estrogens may play a causative role. Objectives: To clarify the influence of endogenous estrogen and gender in PH and assess the therapeutic potential of a clinically available aromatase inhibitor. Methods: We interrogated the effect of reduced endogenous estrogen in males and females using the aromatase inhibitor, anastrozole, in two models of PH; the hypoxic mouse and Sugen 5416/hypoxic rat. We also determined the effects of gender on pulmonary expression of aromatase in these models and in lungs from PAH patients. Results: Anastrozole attenuated PH in both models studied, but only in females. To verify this effect was due to reduced estrogenic activity we confirmed that in hypoxic mice inhibition of estrogen receptor alpha also has a therapeutic effect specifically in females. Female rodent lung displays increased aromatase and decreased BMPR2 and Id1 expression compared to male. Anastrozole treatment reversed the impaired BMPR2 pathway in females. Increased aromatase expression was also detected in female human pulmonary artery smooth muscle cells compared to male. Conclusions: The unique phenotype of female pulmonary arteries facilitates the therapeutic effects of anastrozole in experimental PH confirming a role for endogenous estrogen in the disease pathogenesis in females and suggests aromatase inhibitors may have therapeutic potential

    A sex-specific microRNA-96/5HT1B Axis influences development of pulmonary hypertension

    Get PDF
    Rationale: Females are predisposed to pulmonary arterial hypertension (PAH); evidence suggests that serotonin, mutations in the bone morphogenetic protein receptor (BMPR) II gene, and estrogens influence development of PAH. The 5-hydroxytryptamine 1B receptor (5-HT1BR) mediates human pulmonary artery smooth muscle cell (hPASMC) proliferation. Objectives: We aimed to determine whether selected microRNAs (miRNAs) expressed in PASMCs are influenced by sex, BMPR-II mutations, and estrogens, and contribute to PASMC proliferation in PAH. Methods: Expression levels of miRNAs targeting genes related to PAH, estrogen, and serotonin were determined by quantitative RT-PCR in hPASMCs and mouse PASMCs harboring a heterozygous mutation in BMPR-II (BMPR-IIR899X+/− PASMCs). miRNA-96 targets 5-HT1BR and was selected for further investigation. miRNA target validation was confirmed by luciferase reporter assay. Precursor miRNA-96 was transfected into hPASMCs to examine effects on proliferation and 5-HT1BR expression. The effect of a miRNA-96 mimic on the development of hypoxic pulmonary hypertension in mice was also assessed. Measurements and Main Results: miRNA-96 expression was reduced in BMPR-IIR899X+/− PASMCs from female mice and hPASMCs from female patients with PAH; this was associated with increased 5-HT1BR expression and serotonin-mediated proliferation. 5-HT1BR was validated as a target for miRNA-96. Transfection of precursor miRNA-96 into hPASMCs reduced 5-HT1BR expression and inhibited serotonin-induced proliferation. Restoration of miRNA-96 expression in pulmonary arteries in vivo via administration of an miRNA-96 mimic reduced the development of hypoxia-induced pulmonary hypertension in the mouse. Conclusions: Increased 5-HT1BR expression may be a consequence of decreased miRNA-96 expression in female patient PASMCs, and this may contribute to the development of PAH

    Obesity alters oestrogen metabolism and contributes to pulmonary arterial hypertension

    Get PDF
    Obesity is a common comorbidity for pulmonary arterial hypertension (PAH). Additionally, oestrogen and its metabolites are risk factors for the development of PAH. Visceral adipose tissue (VAT) is a major site of oestrogen production; however, the influence of obesity-induced changes in oestrogen synthesis and metabolism on the development of PAH is unclear. To address this we investigated the effects of inhibiting oestrogen synthesis and metabolism on the development of pulmonary hypertension (PH) in male and female obese mice. We depleted endogenous oestrogen in leptin deficient (ob/ob) mice with the oestrogen inhibitor anastrozole (ANA) and determined the effects on the development of PH, plasma oestradiol and urinary 16α-hydroxyestrone (16αOHE1). Oestrogen metabolism through CYP1B1 was inhibited with 2,2',4,6'-tetramethoxystilbene (TMS). Ob/ob mice spontaneously develop PH, pulmonary vascular remodelling and increased reactive oxygen species (ROS) production in the lung; these effects were attenuated by ANA. Oestradiol levels were decreased in obese male mice; however, VAT CYP1B1 and 16αOHE1 levels were increased. TMS also attenuated PH in male ob/ob mice. Intra-thoracic fat from ob/ob mice and VAT conditioned media produce 16αOHE1 and can contribute to oxidative stress; effects that are attenuated by both ANA and TMS. Obesity can induce PH and changes in oestrogen metabolism, resulting in increased production of 16αOHE1 from VAT that contributes to oxidative stress. Oestrogen inhibitors are now in clinical trials for PAH. This study has translational consequences as it suggests that oestrogen inhibitors may be especially beneficial in treating obese individuals with PA

    Sex-dependent changes in right ventricular gene expression in response to pressure overload in a rat model of pulmonary trunk banding

    Get PDF
    Right ventricular hypertrophy (RVH) and subsequent failure are consequences of pulmonary arterial hypertension (PAH). While females are four times more likely to develop PAH, male patients have poorer survival even with treatment, suggesting a sex-dependent dimorphism in right ventricular (RV) hypertrophy/compensation. This may result from differential gene expression in the RV in male vs. female. To date, the sex dependent effect of pressure overload on RV function and changes in gene expression is still unclear. We hypothesize that pressure overload promotes gene expression changes in the RV that may contribute to a poorer outcome in males vs. females. To test this hypothesis, male and female Wistar rats underwent either a sham procedure (sham controls) or moderate pulmonary trunk banding (PTB) (a model of pressure overload induced compensated RV hypertrophy) surgery. Seven weeks post-surgery, RV function was assessed in vivo, and tissue samples were collected for gene expression using qPCR. Compared to sham controls, PTB induced significant increases in the right ventricular systolic pressure, the filling pressure and contractility, which were similar between male and female rats. PTB resulted in an increase in RVH indexes (RV weight, RV weight/tibia length and Fulton index) in both male and female groups. However, RVH indexes were significantly higher in male-PTB when compared to female-PTB rats. Whilst end of procedure body weight was greater in male rats, end of procedure pulmonary artery (PA) diameters were the same in both males and females. RV gene expression analysis revealed that the following genes were increased in PTB-male rats compared with the sham-operated controls: natriuretic peptide A (ANP) and B (BNP), as well as the markers of fibrosis; collagen type I and III. In females, only BNP was significantly increased in the RV when compared to the sham-operated female rats. Furthermore, ANP, BNP and collagen III were significantly higher in the RV from PTB-males when compared to RV from PTB-female rats. Our data suggest that pressure overload-mediated changes in gene expression in the RV from male rats may worsen RVH and increase the susceptibility of males to a poorer outcome when compared to females
    corecore