16 research outputs found

    Life and death of the Bose polaron

    Full text link
    Spectroscopic and interferometric measurements complement each other in extracting the fundamental properties of quantum many-body systems. While spectroscopy provides precise measurements of equilibrated energies, interferometry can elucidate the dynamical evolution of the system. For an impurity immersed in a bosonic medium, both are equally important for understanding the quasiparticle physics of the Bose polaron. Here, we compare the interferometric and spectroscopic timescales to the underlying dynamical regimes of the impurity dynamics and the polaron lifetime, highlighting the capability of the interferometric approach to clearly resolve polaron dynamics. In particular, interferometric measurements of the coherence amplitude at strong interactions reveal faster quantum dynamics at large repulsive interaction strengths than at unitarity. These observations are in excellent agreement with a short-time theoretical prediction including both the continuum and the attractive polaron branch. For longer times, qualitative agreement with a many-body theoretical prediction which includes both branches is obtained. Moreover, the polaron energy is extracted from interferometric measurements of the observed phase velocity in agreement with previous spectroscopic results from weak to strong attractive interactions. Finally, the phase evolution allows for the measurement of an energetic equilibration timescale, describing the initial approach of the phase velocity to the polaron energy. Theoretically, this is shown to lie within the regime of universal dynamics revealing a fast initial evolution towards the formation of polarons. Our results give a comprehensive picture of the many-body physics governing the Bose polaron and thus validates the quasiparticle framework for further studies.Comment: 9 pages, 6 figure

    Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota

    Get PDF
    BACKGROUND: Roux-en-Y gastric bypass (RYGB) is an effective means to achieve sustained weight loss for morbidly obese individuals. Besides rapid weight reduction, patients achieve major improvements of insulin sensitivity and glucose homeostasis. Dysbiosis of gut microbiota has been associated with obesity and some of its co-morbidities, like type 2 diabetes, and major changes of gut microbial communities have been hypothesized to mediate part of the beneficial metabolic effects observed after RYGB. Here we describe changes in gut microbial taxonomic composition and functional potential following RYGB. METHODS: We recruited 13 morbidly obese patients who underwent RYGB, carefully phenotyped them, and had their gut microbiomes quantified before (n = 13) and 3 months (n = 12) and 12 months (n = 8) after RYGB. Following shotgun metagenomic sequencing of the fecal microbial DNA purified from stools, we characterized the gut microbial composition at species and gene levels followed by functional annotation. RESULTS: In parallel with the weight loss and metabolic improvements, gut microbial diversity increased within the first 3 months after RYGB and remained high 1 year later. RYGB led to altered relative abundances of 31 species (P < 0.05, q < 0.15) within the first 3 months, including those of Escherichia coli, Klebsiella pneumoniae, Veillonella spp., Streptococcus spp., Alistipes spp., and Akkermansia muciniphila. Sixteen of these species maintained their altered relative abundances during the following 9 months. Interestingly, Faecalibacterium prausnitzii was the only species that decreased in relative abundance. Fifty-three microbial functional modules increased their relative abundance between baseline and 3 months (P < 0.05, q < 0.17). These functional changes included increased potential (i) to assimilate multiple energy sources using transporters and phosphotransferase systems, (ii) to use aerobic respiration, (iii) to shift from protein degradation to putrefaction, and (iv) to use amino acids and fatty acids as energy sources. CONCLUSIONS: Within 3 months after morbidly obese individuals had undergone RYGB, their gut microbiota featured an increased diversity, an altered composition, an increased potential for oxygen tolerance, and an increased potential for microbial utilization of macro- and micro-nutrients. These changes were maintained for the first year post-RYGB. TRIAL REGISTRATION: Current controlled trials (ID NCT00810823, NCT01579981, and NCT01993511). ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0312-1) contains supplementary material, which is available to authorized users

    Systems signatures reveal unique remission-path of Type 2 diabetes following Roux-en-Y gastric bypass surgery

    Get PDF
    Roux-en-Y Gastric bypass surgery (RYGB) is emerging as a powerful tool for treatment of obesity and may also cause remission of type 2 diabetes. However, the molecular mechanism of RYGB leading to diabetes remission independent of weight loss remains elusive. In this study, we profiled plasma metabolites and proteins of 10 normal glucose-tolerant obese (NO) and 9 diabetic obese (DO) patients before and 1-week, 3-months, 1-year after RYGB. 146 proteins and 128 metabolites from both NO and DO groups at all four stages were selected for further analysis. By analyzing a set of bi-molecular associations among the corresponding network of the subjects with our newly developed computational method, we defined the represented physiological states (called the edge-states that reflect the interactions among the bio-molecules), and the related molecular networks of NO and DO patients, respectively. The principal component analyses (PCA) revealed that the edge states of the post-RYGB NO subjects were significantly different from those of the post-RYGB DO patients. Particularly, the time-dependent changes of the molecular hub-networks differed between DO and NO groups after RYGB. In conclusion, by developing molecular network-based systems signatures, we for the first time reveal that RYGB generates a unique path for diabetes remission independent of weight loss

    Effects of Roux-en-Y Gastric Bypass on Fasting and Postprandial Levels of the Inflammatory Markers YKL-40 and MCP-1 in Patients with Type 2 Diabetes and Glucose Tolerant Subjects

    Get PDF
    Background. The inflammatory markers YKL-40 and monocyte chemoattractant protein-1 (MCP-1) are elevated in morbidly obese patients and decline after weight loss. The objective of our study was to investigate the possible changes of YKL-40 and MCP-1, in both the fasting and the postprandial states, following Roux-en-Y gastric bypass (RYGB) in subjects with type 2 diabetes (T2D) and normal glucose tolerance (NGT). Methods. Ten obese patients with T2D and 10 subjects with NGT were examined in the fasting state and after a standard meal prior to and after (1 week, 3 months, and 1 year) RYGB. Results. Fasting state MCP-1 levels decreased after RYGB in both groups (P values < 0.0001) whereas fasting YKL-40 levels were unchanged (P values ≥ 0.120). Postprandial MCP-1 levels showed a tendency towards a decrease on most study days; however, the changes were only significant at 1 week (P=0.001) and 1 yr (P<0.0001) in the T2D group and at 3 mo after RYGB in the NGT group (P=0.009). YKL-40 levels showed a slight, postprandial suppression on all study days in the T2D group (all P values ≤ 0.021). Conclusions. Fasting MCP-1 levels, but not YKL-40 levels, decrease after RYGB in subjects with T2D and NGT. Postprandial changes of inflammatory markers are discrete and inconsistent
    corecore