48 research outputs found
New synchronization method for <i>Plasmodium falciparum</i>
<b>Background</b>: Plasmodium falciparum is usually asynchronous during in vitro culture. Although various synchronization methods are available, they are not able to narrow the range of ages of parasites. A newly developed method is described that allows synchronization of parasites to produce cultures with an age range as low as 30 minutes.
<b>Methods</b>: Trophozoites and schizonts are enriched using Plasmion. The enriched late stage parasites are immobilized as a monolayer onto plastic Petri dishes using concanavalin A. Uninfected erythrocytes are placed onto the monolayer for a limited time period, during which time schizonts on the monolayer rupture and the released merozoites invade the fresh erythrocytes. The overlay is then taken off into a culture flask, resulting in a highly synchronized population of parasites.
<b>Results</b>: Plasmion treatment results in a 10- to 13-fold enrichment of late stage parasites. The monolayer method results in highly synchronized cultures of parasites where invasion has occurred within a very limited time window, which can be as low as 30 minutes. The method is simple, requiring no specialized equipment and relatively cheap reagents.
<b>Conclusions</b>: The new method for parasite synchronization results in highly synchronized populations of parasites, which will be useful for studies of the parasite asexual cell cycle
Alteration of Hypothalamic–Pituitary–Thyroid Axis Function in Non-Small-Cell Lung Cancer Patients
The aim of this study was to evaluate the hypothalamic–pituitary–thyroid (HPT) axis function in patients suffering from lung cancer. Thyrotropin-releasing hormone (TRH), thyroid-stimulating hormone (TSH), free thyroxine (FT4), interleukin (IL)-2, and melatonin serum levels were measured in blood samples collected every 4 hours for 24 hours from 11 healthy participants (H; ages 35-53 years) and 9 patients suffering from non-small-cell lung cancer (C; ages 43-63 years). Relationships between hormone levels overall and over time of day were evaluated within and among groups. A prominent circadian rhythm with peaks near midnight was present for TSH and melatonin serum levels in both H and C, indicating similar synchronization of the main body clock to the 24-hour environmental light–dark cycle. As regards 24-hour means in H and C, TSH was lower in C, whereas TRH, FT4, and IL-2 were higher in C, with no difference in melatonin levels. Simple linear regression, FT4 versus TRH, showed a positive correlation in H..
Levodopa-Induced Dyskinesia Is Associated with Increased Thyrotropin Releasing Hormone in the Dorsal Striatum of Hemi-Parkinsonian Rats
Background
Dyskinesias associated with involuntary movements and painful muscle contractions are a common and severe complication of standard levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine) therapy for Parkinson's disease. Pathologic neuroplasticity leading to hyper-responsive dopamine receptor signaling in the sensorimotor striatum is thought to underlie this currently untreatable condition.
Methodology/Principal Findings
Quantitative real-time polymerase chain reaction (PCR) was employed to evaluate the molecular changes associated with L-DOPA-induced dyskinesias in Parkinson's disease. With this technique, we determined that thyrotropin releasing hormone (TRH) was greatly increased in the dopamine-depleted striatum of hemi-parkinsonian rats that developed abnormal movements in response to L-DOPA therapy, relative to the levels measured in the contralateral non-dopamine-depleted striatum, and in the striatum of non-dyskinetic control rats. ProTRH immunostaining suggested that TRH peptide levels were almost absent in the dopamine-depleted striatum of control rats that did not develop dyskinesias, but in the dyskinetic rats, proTRH immunostaining was dramatically up-regulated in the striatum, particularly in the sensorimotor striatum. This up-regulation of TRH peptide affected striatal medium spiny neurons of both the direct and indirect pathways, as well as neurons in striosomes.
Conclusions/Significance
TRH is not known to be a key striatal neuromodulator, but intrastriatal injection of TRH in experimental animals can induce abnormal movements, apparently through increasing dopamine release. Our finding of a dramatic and selective up-regulation of TRH expression in the sensorimotor striatum of dyskinetic rat models suggests a TRH-mediated regulatory mechanism that may underlie the pathologic neuroplasticity driving dopamine hyper-responsivity in Parkinson's disease.Morris K. Udall Center for Excellence in Parkinson’s Research at MGH/MITNational Institutes of Health (U.S.) (NIH NS38372)American Parkinson Disease Association, Inc.University of Alabama at BirminghamMassachusetts General HospitalNational Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIDDK/NIH grant R01 DK58148)National Institute of Neurological Disorders and Stroke (U.S.) (R01 NINDS/NIH grant NS045231)Stanley H. and Sheila G. Sydney FundMichael J. Fox Foundation for Parkinson's Researc
Comparison of the in vitro invasive capabilities of Plasmodium falciparum schizonts isolated by Percoll gradient or using magnetic based separation
<p>Abstract</p> <p>Background</p> <p>Percoll gradient centrifugation is often used for synchronization, enrichment, or isolation of a particular stage of <it>Plasmodium falciparum</it>. However, Percoll, a hyperosmotic agent, may have harmful effects on the parasites. Magnetic bead column (MBC) separation has been used as an alternative. This is a report of a head-to-head comparison of the <it>in vitro </it>invasive capabilities of parasites isolated by either of the two methods.</p> <p>Methods</p> <p>The <it>P. falciparum </it>laboratory strain isolate 7G8 was grown <it>in vitro </it>using standard procedures and synchronized using 5% sorbitol. On separate days when the schizont parasitaemia was >1%, the culture was split and half was processed by Percoll gradient centrifugation and the other half by magnetic bead column separation. Both processed parasites were placed back in culture and allowed to invade new uninfected erythrocytes.</p> <p>Results</p> <p>In 10 paired assays, the mean efficiency of invasion of 7G8 parasites treated by Percoll gradient centrifugation was 35.8% that of those treated by magnetic bead column separation (95% CI, p = 0.00067) A paired <it>t </it>test with two tails was used for these comparisons.</p> <p>Conclusions</p> <p>In this comparison, magnetic bead column separation of 7G8 schizonts resulted in higher viability and efficiency of invasion than utilizing Percoll gradient centrifugation.</p
Probing the Production of Amidated Peptides following Genetic and Dietary Copper Manipulations
Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM+/−) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM+/− mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM+/− mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides
Thyroid Function and Body Weight: A Community-Based Longitudinal Study
OBJECTIVE: Body weight and overt thyroid dysfunction are associated. Cross-sectional population-based studies have repeatedly found that thyroid hormone levels, even within the normal reference range, might be associated with body weight. However, for longitudinal data, the association is less clear. Thus, we tested the association between serum thyrotropin (TSH) and body weight in a community-based sample of adult persons followed for 11 years. METHODS: A random sample of 4,649 persons aged 18-65 years from a general population participated in the DanThyr study in 1997-8. We included 2,102 individuals who participated at 11-year follow-up, without current or former treatment for thyroid disease and with measurements of TSH and weight at both examinations. Multiple linear regression models were used, stratified by sex and adjusted for age, smoking status, and leisure time physical activity. RESULTS: Baseline TSH concentration was not associated with change in weight (women, P = 0.17; men, P = 0.72), and baseline body mass index (BMI) was not associated with change in TSH (women, P = 0.21; men, P = 0.85). Change in serum TSH and change in weight were significantly associated in both sexes. Weight increased by 0.3 kg (95% confidence interval [CI] 0.1, 0.4, P = 0.005) in women and 0.8 kg (95% CI 0.1, 1.4, P = 0.02) in men for every one unit TSH (mU/L) increase. CONCLUSIONS: TSH levels were not a determinant of future weight changes, and BMI was not a determinant for TSH changes, but an association between weight change and TSH change was present
Analysis of Thyroid Response Element Activity during Retinal Development
Thyroid hormone (TH) signaling components are expressed during retinal development in dynamic spatial and temporal patterns. To probe the competence of retinal cells to mount a transcriptional response to TH, reporters that included thyroid response elements (TREs) were introduced into developing retinal tissue. The TREs were placed upstream of a minimal TATA-box and two reporter genes, green fluorescent protein (GFP) and human placental alkaline phosphatase (PLAP). Six of the seven tested TREs were first tested in vitro where they were shown to drive TH-dependent expression. However, when introduced into the developing retina, the TREs reported in different cell types in both a TH-dependent and TH-independent manner, as well as revealed specific spatial patterns in their expression. The role of the known thyroid receptors (TR), TRα and TRβ, was probed using shRNAs, which were co-electroporated into the retina with the TREs. Some TREs were positively activated by TR+TH in the developing outer nuclear layer (ONL), where photoreceptors reside, as well as in the outer neuroblastic layer (ONBL) where cycling progenitor cells are located. Other TREs were actively repressed by TR+TH in cells of the ONBL. These data demonstrate that non-TRs can activate some TREs in a spatially regulated manner, whereas other TREs respond only to the known TRs, which also read out activity in a spatially regulated manner. The transcriptional response to even simple TREs provides a starting point for understanding the regulation of genes by TH, and highlights the complexity of transcriptional regulation within developing tissue
Recommended from our members
Glucocorticoids modulate the biosynthesis and processing of prothyrotropin releasing-hormone (proTRH).
The thyrotropin- (TRH) releasing hormone precursor (26 kDa) undergoes proteolytic cleavage at either of two sites, generating N-terminal 15 kDa/9.5 kDa or C-terminal 16.5/10 kDa intermediate forms that are processed further to yield five copies of TRH-Gly and seven non-TRH peptides. Glucocorticoids (Gcc) have been shown to enhance TRH gene expression in three different cell systems in vitro, an effect that occurs, at least in part, through transcriptional activation. Although this implies that an increase of TRH prohormone biosynthesis would take place, this had not been demonstrated as yet. We report here that the synthetic glucocorticoid dexamethasone (Dex) substantially elevated the de novo biosynthesis of the intact 26-kDa TRH prohormone and its intermediate products of processing in cultured anterior pituitary cells, an observation that is consistent with an overall upregulation of both the biosynthesis and degradation of the TRH precursor. We reasoned that Gcc may act not only at the transcriptional, but also at the translational/posttranslational level. To address this question we chose a different cell system, AtT20 cells transfected with a cDNA encoding preproTRH. Since TRH gene expression in these cells is driven by the CMV-IE promoter and not by an endogenous "physiological" promoter, these cells provide an ideal model to study selectively the effects of Gcc on the translation and posttranslational processing of proTRH without interference from a direct transcriptional activation of the TRH gene. Dex caused a significant 75.7% increase in newly synthesized 26-kDa TRH prohormone, suggesting that the glucocorticoid raised the translation rate. We then demonstrated that Dex treatment accelerated TRH precursor processing. Of interest, processing of the N- vs the C-terminal intermediate was influenced differentially by the glucocorticoid. Although the N-terminal intermediate product of processing accumulated, the C-terminal intermediate was degraded more rapidly. Consistent with these observations was the finding that the intracellular accumulation of the N-terminally derived peptide preproTRH 25-50 was enhanced, but levels of the C-terminally derived peptide preproTRH208-255 were reduced. Accumulation of TRH itself, whose five copies are N- and C-terminally derived, was also enhanced. We conclude that Gcc induce changes in the biosynthesis and processing of proTRH by increasing the translation rate and by differentially influencing the processing of N- vs C-terminal intermediates of the precursor molecule. These effects of Gcc at the translational and posttranslational levels result in an increase in TRH production accompanied by differential effects on the accumulation of N- and C-terminal non-TRH peptides
Glucocorticoids modulate the biosynthesis and processing of prothyrotropin releasing-hormone (proTRH).
The thyrotropin- (TRH) releasing hormone precursor (26 kDa) undergoes proteolytic cleavage at either of two sites, generating N-terminal 15 kDa/9.5 kDa or C-terminal 16.5/10 kDa intermediate forms that are processed further to yield five copies of TRH-Gly and seven non-TRH peptides. Glucocorticoids (Gcc) have been shown to enhance TRH gene expression in three different cell systems in vitro, an effect that occurs, at least in part, through transcriptional activation. Although this implies that an increase of TRH prohormone biosynthesis would take place, this had not been demonstrated as yet. We report here that the synthetic glucocorticoid dexamethasone (Dex) substantially elevated the de novo biosynthesis of the intact 26-kDa TRH prohormone and its intermediate products of processing in cultured anterior pituitary cells, an observation that is consistent with an overall upregulation of both the biosynthesis and degradation of the TRH precursor. We reasoned that Gcc may act not only at the transcriptional, but also at the translational/posttranslational level. To address this question we chose a different cell system, AtT20 cells transfected with a cDNA encoding preproTRH. Since TRH gene expression in these cells is driven by the CMV-IE promoter and not by an endogenous "physiological" promoter, these cells provide an ideal model to study selectively the effects of Gcc on the translation and posttranslational processing of proTRH without interference from a direct transcriptional activation of the TRH gene. Dex caused a significant 75.7% increase in newly synthesized 26-kDa TRH prohormone, suggesting that the glucocorticoid raised the translation rate. We then demonstrated that Dex treatment accelerated TRH precursor processing. Of interest, processing of the N- vs the C-terminal intermediate was influenced differentially by the glucocorticoid. Although the N-terminal intermediate product of processing accumulated, the C-terminal intermediate was degraded more rapidly. Consistent with these observations was the finding that the intracellular accumulation of the N-terminally derived peptide preproTRH 25-50 was enhanced, but levels of the C-terminally derived peptide preproTRH208-255 were reduced. Accumulation of TRH itself, whose five copies are N- and C-terminally derived, was also enhanced. We conclude that Gcc induce changes in the biosynthesis and processing of proTRH by increasing the translation rate and by differentially influencing the processing of N- vs C-terminal intermediates of the precursor molecule. These effects of Gcc at the translational and posttranslational levels result in an increase in TRH production accompanied by differential effects on the accumulation of N- and C-terminal non-TRH peptides