13 research outputs found
Automatic reconstruction of the delivered dose of the day using MR-linac treatment log files and online MR imaging
Background and purpose Anatomical changes during external beam radiotherapy prevent the accurate delivery of the intended dose distribution. Resolving the delivered dose, which is currently unknown, is crucial to link radiotherapy doses to clinical outcomes and ultimately improve the standard of care. Material and methods In this study, we present a dose reconstruction workflow based on data routinely acquired during MR-guided radiotherapy. It employs 3D MR images, 2D cine MR images and treatment machine log files to calculate the delivered dose taking intrafractional motion into account. The developed pipeline was used to measure anatomical changes and assess their dosimetric impact in 89 prostate radiotherapy fractions delivered with a 1.5 T MR-linac at our institute. Results Over the course of radiation delivery, the CTV shifted 0.6 mm ± 2.1 mm posteriorly and 1.3 mm ± 1.5 mm inferiorly. When extrapolating the dose changes in each case to 20 fractions, the mean clinical target volume and clinical target volume dose-volume metrics decreased by 1.1 Gy ± 1.6 Gy and 0.1 Gy ± 0.2 Gy, respectively. Bladder did not change (0.0 Gy ± 1.2 Gy), while rectum decreased by 1.0 Gy ± 2.0 Gy. Although anatomical changes and their dosimetric impact were small in the majority of cases, large intrafractional motion caused the delivered dose to substantially deviate from the intended plan in some fractions. Conclusions The presented end-to-end workflow is able to reliably, non-invasively and automatically reconstruct the delivered prostate radiotherapy dose by processing MR-linac treatment log files and online MR images. In the future, we envision this workflow to be adapted to other cancer sites and ultimately to enter widespread clinical use
A phase space model of a Versa HD linear accelerator for application to Monte Carlo dose calculation in a real-time adaptive workflow.
PURPOSE: This study aims to develop and validate a simple geometric model of the accelerator head, from which a particle phase space can be calculated for application to fast Monte Carlo dose calculation in real-time adaptive photon radiotherapy. With this objective in view, the study investigates whether the phase space model can facilitate dose calculations which are compatible with those of a commercial treatment planning system, for convenient interoperability. MATERIALS AND METHODS: A dual-source model of the head of a Versa HD accelerator (Elekta AB, Stockholm, Sweden) was created. The model used parameters chosen to be compatible with those of 6-MV flattened and 6-MV flattening filter-free photon beams in the RayStation treatment planning system (RaySearch Laboratories, Stockholm, Sweden). The phase space model was used to calculate a photon phase space for several treatment plans, and the resulting phase space was applied to the Dose Planning Method (DPM) Monte Carlo dose calculation algorithm. Simple fields and intensity-modulated radiation therapy (IMRT) treatment plans for prostate and lung were calculated for benchmarking purposes and compared with the convolution-superposition dose calculation within RayStation. RESULTS: For simple square fields in a water phantom, the calculated dose distribution agrees to within ±2% with that from the commercial treatment planning system, except in the buildup region, where the DPM code does not model the electron contamination. For IMRT plans of prostate and lung, agreements of ±2% and ±6%, respectively, are found, with slightly larger differences in the high dose gradients. CONCLUSIONS: The phase space model presented allows convenient calculation of a phase space for application to Monte Carlo dose calculation, with straightforward translation of beam parameters from the RayStation beam model. This provides a basis on which to develop dose calculation in a real-time adaptive setting
A phase space model of a Versa HD linear accelerator for application to Monte Carlo dose calculation in a real time adaptive workflow
PURPOSE: This study aims to develop and validate a simple geometric model of the accelerator head, from which a particle phase space can be calculated for application to fast Monte Carlo dose calculation in realâtime adaptive photon radiotherapy. With this objective in view, the study investigates whether the phase space model can facilitate dose calculations which are compatible with those of a commercial treatment planning system, for convenient interoperability. MATERIALS AND METHODS: A dualâsource model of the head of a Versa HD accelerator (Elekta AB, Stockholm, Sweden) was created. The model used parameters chosen to be compatible with those of 6âMV flattened and 6âMV flattening filterâfree photon beams in the RayStation treatment planning system (RaySearch Laboratories, Stockholm, Sweden). The phase space model was used to calculate a photon phase space for several treatment plans, and the resulting phase space was applied to the Dose Planning Method (DPM) Monte Carlo dose calculation algorithm. Simple fields and intensityâmodulated radiation therapy (IMRT) treatment plans for prostate and lung were calculated for benchmarking purposes and compared with the convolutionâsuperposition dose calculation within RayStation. RESULTS: For simple square fields in a water phantom, the calculated dose distribution agrees to within ±2% with that from the commercial treatment planning system, except in the buildup region, where the DPM code does not model the electron contamination. For IMRT plans of prostate and lung, agreements of ±2% and ±6%, respectively, are found, with slightly larger differences in the high dose gradients. CONCLUSIONS: The phase space model presented allows convenient calculation of a phase space for application to Monte Carlo dose calculation, with straightforward translation of beam parameters from the RayStation beam model. This provides a basis on which to develop dose calculation in a realâtime adaptive setting
Daily adaptive radiotherapy for patients with prostate cancer using a high field MR-linac: Initial clinical experiences and assessment of delivered doses compared to a C-arm linac.
INTRODUCTION: MR-guided adapted radiotherapy (MRgART) using a high field MR-linac has recently become available. We report the estimated delivered fractional dose of the first five prostate cancer patients treated at our centre using MRgART and compare this to C-Arm linac daily Image Guided Radiotherapy (IGRT). METHODS: Patients were treated using adapted treatment plans shaped to their daily anatomy. The treatments were recalculated on an MR image acquired immediately prior to treatment delivery in order to estimate the delivered fractional dose. C-arm linac non-adapted VMAT treatment plans were recalculated on the same MR images to estimate the fractional dose that would have been delivered using conventional radiotherapy techniques using a daily IGRT protocol. RESULTS: 95% and 93% of mandatory target coverage objectives and organ at risk dose constraints were achieved by MRgART and C-arm linac delivered dose estimates, respectively. Both delivery techniques were estimated to have achieved 98% of mandatory Organ At Risk (OAR) dose constraints whereas for the target clinical goals, 86% and 80% were achieved by MRgART and C-arm linac delivered dose estimates. CONCLUSIONS: Prostate MRgART can be delivered using the a high field MR-linac. Radiotherapy performed on a C-arm linac offers a good solution for prostate cancer patients who present with favourable anatomy at the time of reference imaging and demonstrate stable anatomy throughout the course of their treatment. For patients with critical OARs abutting target volumes on their reference image we have demonstrated the potential for a target dose coverage improvement for MRgART compared to C-arm linac treatment