12 research outputs found

    Breast cancer metastasis to gynaecological organs: a clinico-pathological and molecular profiling study

    Get PDF
    Breast cancer metastasis to gynaecological organs is an understudied pattern of tumour spread. We explored clinico-pathological and molecular features of these metastases to better understand whether this pattern of dissemination is organotropic or a consequence of wider metastatic dissemination. Primary and metastatic tumours from 54 breast cancer patients with gynaecological metastases were analysed using immunohistochemistry, DNA copy-number profiling, and targeted sequencing of 386 cancer-related genes. The median age of primary tumour diagnosis amongst patients with gynaecological metastases was significantly younger compared to a general breast cancer population (46.5 versus 60 years; p < 0.0001). Median age at metastatic diagnosis was 54.4, time to progression was 4.8 years (range 0-20 years), and survival following a diagnosis of metastasis was 1.95 years (range 0-18 years). Patients had an average of five involved sites (most frequently ovary, fallopian tube, omentum/peritoneum), with fewer instances of spread to the lungs, liver, or brain. Invasive lobular histology and luminal A-like phenotype were over-represented in this group (42.8 and 87.5%, respectively) and most patients had involved axillary lymph nodes (p < 0.001). Primary tumours frequently co-expressed oestrogen receptor cofactors (GATA3, FOXA1) and harboured amplifications at 8p12, 8q24, and 11q13. In terms of phenotype conversion, oestrogen receptor status was generally maintained in metastases, FOXA1 increased, and expression of progesterone receptor, androgen receptor, and GATA3 decreased. ESR1 and novel AR mutations were identified. Metastasis to gynaecological organs is a complication frequently affecting young women with invasive lobular carcinoma and luminal A-like breast cancer, and hence may be driven by sustained hormonal signalling. Molecular analyses reveal a spectrum of factors that could contribute to de novo or acquired resistance to therapy and disease progression.Jamie R Kutasovic, Amy E McCart Reed, Renique Males, Sarah Sim, Jodi M Saunus ... Liana Dedina ... et al

    N-glycolylneuraminic acid serum biomarker levels are elevated in breast cancer patients at all stages of disease

    Get PDF
    Background: Normal human tissues do not express glycans terminating with the sialic acid N-glycolylneuraminic acid (Neu5Gc), yet Neu5Gc-containing glycans have been consistently found in human tumor tissues, cells and secretions and have been proposed as a cancer biomarker. We engineered a Neu5Gc-specifc lectin called SubB2M, and previously reported elevated Neu5Gc biomarkers in serum from ovarian cancer patients using a Surface Plasmon Resonance (SPR)-based assay. Here we report an optimized SubB2M SPR-based assay and use this new assay to analyse sera from breast cancer patients for Neu5Gc levels. Methods: To enhance specifcity of our SPR-based assay, we included a non-sialic acid binding version of SubB, SubBA12, to control for any non-specifc binding to SubB2M, which improved discrimination of cancer-free controls from early-stage ovarian cancer. We analysed 96 serum samples from breast cancer patients at all stages of disease compared to 22 cancer-free controls using our optimized SubB2M-A12-SPR assay. We also analysed a collection of serum samples collected at 6 monthly intervals from breast cancer patients at high risk for disease recurrence or spread. Results: Analysis of sera from breast cancer cases revealed signifcantly elevated levels of Neu5Gc biomarkers at all stages of breast cancer. We show that Neu5Gc serum biomarker levels can discriminate breast cancer patients from cancer-free individuals with 98.96% sensitivity and 100% specifcity. Analysis of serum collected prospectively, postdiagnosis, from breast cancer patients at high risk for disease recurrence showed a trend for a decrease in Neu5Gc levels immediately following treatment for those in remission. Conclusions: Neu5Gc serum biomarkers are a promising new tool for early detection and disease monitoring for breast cancer that may complement current imaging- and biopsy-based approaches.Lucy K. Shewell, Christopher J. Day, Jamie R. Kutasovic, Jodie L. Abrahams, Jing Wang, Jessica Poole, Colleen Niland, Kaltin Ferguson, Jodi M. Saunus, Sunil R. Lakhani, Mark von Itzstein, James C. Paton, Adrienne W. Paton, and Michael P. Jenning
    corecore