4 research outputs found
Calibration Model Maintenance in Melamine Resin Production: Integrating Drift Detection, Smart Sample Selection and Model Adaptation
The physico-chemical properties of Melamine Formaldehyde (MF) based thermosets are largely influenced by the degree of polymerization (DP) in the underlying resin. On-line supervision of the turbidity point by means of vibrational spectroscopy has recently emerged as a promising technique to monitor the DP of MF resins. However, spectroscopic determination of the DP relies on chemometric models, which are usually sensitive to drifts caused by instrumental and/or sample associated changes occurring over time. In order to detect the time point when drifts start causing prediction bias, we here explore a universal drift detector based on a faded version of the Page-Hinkley (PH) statistic, which we test in three data streams from an industrial MF resin production process. We employ committee disagreement (CD), computed as the variance of model predictions from an ensemble of partial least squares (PLS) models, as a measure for sample-wise prediction uncertainty and use the PH statistic to detect hanges in this quantity. We further explore supervised and unsupervised strategies for (semi-)automatic model adaptation upon detection of a drift. For the former, manual reference measurements are requested whenever statistical thresholds on Hotelling’s and/or Q-Residuals are violated. Models are subsequently re-calibrated using weighted partial least squares in order to increase the influence of newer samples, which increases the flexibility when adapting to new (drifted) states. Unsupervised model adaptation is carried out exploiting the dual antecedent-consequent structure of a recently developed fuzzy systems variant of PLS termed FLEXFIS-PLS. In particular, antecedent parts are updated while maintaining the internal structure of the local linear predictors (i.e. the consequents). We found improved drift detection capability of the CD compared to Hotelling’s and Q-Residuals when used in combination with the proposed PH test. Furthermore, we found that active selection of samples by active learning (AL) used for subsequent model adaptation is advantageous compared to passive (random) selection in case that a drift leads to persistent prediction bias allowing more rapid adaptation at lower reference measurement rates. Fully unsupervised adaptation using FLEXFIS-PLS could improve predictive accuracy significantly for light drifts but was not able to fully compensate for prediction bias in case of significant lack of fit w.r.t. the latent variable space
On the relevance of preprocessing in predictive maintenance for dynamic systems
The complexity involved in the process of real-time data-driven monitoring dynamic systems for predicted maintenance is usually huge. With more or less in-depth any data-driven approach is sensitive to data preprocessing, understood as any data treatment prior to the application of the monitoring model, being sometimes crucial for the final development of the employed monitoring technique. The aim of this work is to quantify the sensitiveness of data-driven predictive maintenance models in dynamic systems in an exhaustive way.
We consider a couple of predictive maintenance scenarios, each of them defined by some public available data. For each scenario, we consider its properties and apply several techniques for each of the successive preprocessing steps, e.g. data cleaning, missing values treatment, outlier detection, feature selection, or imbalance compensation. The pretreatment configurations, i.e. sequential combinations of techniques from different preprocessing steps, are considered together with different monitoring approaches, in order to determine the relevance of data preprocessing for predictive maintenance in dynamical systems
Are standard sample measurements still needed to transfer multivariate calibration models between near-infrared spectrometers? The answer is not always
Calibration transfer (CT) refers to the set of chemometric techniques used to transfer (near-infrared) calibration models between spectrometers. The requirement of traditional CT methods to measure calibration standard samples has been a challenge as such measurements are difficult in real-world applications, e.g. when the instruments are located far apart or chemically stable standard samples are not available. In recent years, major developments have taken place in the domain of CT, hence, this work provides a concise but critical review of all the main recent chemometric techniques available to perform CT. Particularly this work explains some newer concepts for standard-free CT, where the standard samples are not required to attain the CT. We conclude that CT approaches that do not rely on standard sample measurements hold promise to help making calibration models sharable between similar analytical devices and to increase the applicability of CT to real-world problems in the analytical sciences