3 research outputs found

    Infinite dimensional Lie algebras in 4D conformal quantum field theory

    Full text link
    The concept of global conformal invariance (GCI) opens the way of applying algebraic techniques, developed in the context of 2-dimensional chiral conformal field theory, to a higher (even) dimensional space-time. In particular, a system of GCI scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal fields, V_m(x,y), where the m span a finite dimensional real matrix algebra M closed under transposition. The associative algebra M is irreducible iff its commutant M' coincides with one of the three real division rings. The Lie algebra of (the modes of) the bilocal fields is in each case an infinite dimensional Lie algebra: a central extension of sp(infty,R) corresponding to the field R of reals, of u(infty,infty) associated to the field C of complex numbers, and of so*(4 infty) related to the algebra H of quaternions. They give rise to quantum field theory models with superselection sectors governed by the (global) gauge groups O(N), U(N), and U(N,H)=Sp(2N), respectively.Comment: 16 pages, with minor improvements as to appear in J. Phys.

    Conformal invariance: from Weyl to SO(2,d)

    Full text link
    The present work deals with two different but subtilely related kinds of conformal mappings: Weyl rescaling in d>2d>2 dimensional spaces and SO(2,d) transformations. We express how the difference between the two can be compensated by diffeomorphic transformations. This is well known in the framework of String Theory but in the particular case of d=2d=2 spaces. Indeed, the Polyakov formalism describes world-sheets in terms of two-dimensional conformal field theory. On the other hand, B. Zumino had shown that a classical four-dimensional Weyl-invariant field theory restricted to live in Minkowski space leads to an SO(2,4)-invariant field theory. We extend Zumino's result to relate Weyl and SO(2,d) symmetries in arbitrary conformally flat spaces (CFS). This allows us to assert that a classical SO(2,d)SO(2,d)-invariant field does not distinguish, at least locally, between two different dd-dimensional CFSs.Comment: 5 pages, no figures. There are slight modifications to match with the published versio
    corecore