73 research outputs found

    Spin-transfer torque and spin-polarization in topological-insulator/ferromagnet vertical heterostructures

    Full text link
    We predict an unconventional spin-transfer torque (STT) acting on the magnetization of a free ferromagnetic (F) layer within N/TI/F vertical heterostructures which originates from strong spin-orbit coupling (SOC) on the surface of a three-dimensional topological insulator (TI), as well as from charge current becoming spin-polarized in the direction of transport as it flows from the normal metal (N) across the bulk of the TI slab. Unlike conventional STT in symmetric F'/I/F magnetic tunnel junctions, where only the in-plane STT component is non-zero in the linear response, both the in-plane and perpendicular torque are sizable in N/TI/F junctions while not requiring fixed F' layer as spin-polarizer which is advantageous for spintronic applications. Using the nonequilibrium Born-Oppenheimer treatment of interaction between fast conduction electrons and slow magnetization, we derive a general Keldysh Green function-based STT formula which makes it possible to analyze torque in the presence of SOC either in the bulk or at the interface of the free F layer.Comment: 5 pages, 3 figures, PDFLaTe

    Shot Noise Probing of Magnetic Ordering in Zigzag Graphene Nanoribbons

    Full text link
    The nonequilibrium time-dependent fluctuations of charge current have recently emerged as a sensitive experimental tool to probe ballistic transport through evanescent wave functions introduced into clean wide and short graphene strips by the attached metallic electrodes. We demonstrate that such "pseudo-diffusive" shot noise can be substantially modified in zigzag graphene nanoribbon (ZGNR) due to the topology of its edges responsible for localized states that facilitate ferromagnetic ordering along the edge when Coulomb interaction is taken into account. Thus, the shot noise enhancement of unpolarized, and even more sensitively of spin-polarized, charge currents injected into ZGNR will act as an all-electrical and edge-sensitive probe of such low-dimensional magnetism.Comment: 5 pages, 3 color figures; references update

    Shot Noise of Spin-Decohering Transport in Spin-Orbit Coupled Nanostructures

    Full text link
    We generalize the scattering theory of quantum shot noise to include the full spin-density matrix of electrons injected from a spin-filtering or ferromagnetic electrode into a quantum-coherent nanostructure governed by various spin-dependent interactions. This formalism yields the spin-resolved shot noise power for different experimental measurement setups--with ferromagnetic source and ferromagnetic or normal drain electrodes--whose evaluation for the diffusive multichannel quantum wires with the Rashba (SO) spin-orbit coupling shows how spin decoherence and dephasing lead to substantial enhancement of charge current fluctuations (characterized by Fano factors >1/3> 1/3). However, these processes and the corresponding shot noise increase are suppressed in narrow wires, so that charge transport experiments measuring the Fano factor F↑→↑↓F_{\uparrow \to \uparrow \downarrow} in a ferromagnet/SO-coupled-wire/paramagnet setup also quantify the degree of phase-coherence of transported spin--we predict a one-to-one correspondence between the magnitude of the spin polarization vector and F↑→↑↓F_{\uparrow \to \uparrow \downarrow}.Comment: 8 pages, 3 figure; enhanced with 2 new figure

    Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped-molecule connected to graphene nanoribbon electrodes

    Full text link
    We study all-carbon-hydrogen molecular transistors where zigzag graphene nanoribbons play the role of three metallic electrodes connected to a ring-shaped 18-annulene molecule. Using the nonequilibrium Green function formalism combined with density functional theory, recently extended to multiterminal devices, we show that the proposed nanostructures exhibit exponentially small transmission when the source and drain electrodes are attached in a configuration that ensures destructive interference of electron paths around the ring. The third electrode, functioning either as an attached infinite-impedance voltage probe or as an "air-bridge" top gate covering half of molecular ring, introduces dephasing that brings the transistor into the "on" state with its transmission in the latter case approaching the maximum limit for a single conducting channel device. The current through the latter device can also be controlled in the far-from-equilibrium regime by applying a gate voltage.Comment: 5 pages, 4 color figures, PDFLaTeX, slightly expanded version of the published PRL articl

    Stark effect in low-dimension hydrogen

    Get PDF
    Studies of atomic systems in electric fields are challenging because of the diverging perturbation series. However, physically meaningful Stark shifts and ionization rates can be found by analytical continuation of the series using appropriate branch cut functions. We apply this approach to low-dimensional hydrogen atoms in order to study the effects of reduced dimensionality. We find that modifications by the electric field are strongly suppressed in reduced dimensions. This finding is explained from a Landau-type analysis of the ionization process

    Quantum Transparency of Anderson Insulator Junctions: Statistics of Transmission Eigenvalues, Shot Noise, and Proximity Conductance

    Full text link
    We investigate quantum transport through strongly disordered barriers, made of a material with exceptionally high resistivity that behaves as an Anderson insulator or a ``bad metal'' in the bulk, by analyzing the distribution of Landauer transmission eigenvalues for a junction where such barrier is attached to two clean metallic leads. We find that scaling of the transmission eigenvalue distribution with the junction thickness (starting from the single interface limit) always predicts a non-zero probability to find high transmission channels even in relatively thick barriers. Using this distribution, we compute the zero frequency shot noise power (as well as its sample-to-sample fluctuations) and demonstrate how it provides a single number characterization of non-trivial transmission properties of different types of disordered barriers. The appearance of open conducting channels, whose transmission eigenvalue is close to one, and corresponding violent mesoscopic fluctuations of transport quantities explain at least some of the peculiar zero-bias anomalies in the Anderson-insulator/superconductor junctions observed in recent experiments [Phys. Rev. B {\bf 61}, 13037 (2000)]. Our findings are also relevant for the understanding of the role of defects that can undermine quality of thin tunnel barriers made of conventional band-insulators.Comment: 9 pages, 8 color EPS figures; one additional figure on mesoscopic fluctuations of Fano facto

    Spin Hall Current Driven by Quantum Interferences in Mesoscopic Rashba Rings

    Full text link
    We propose an all-electrical nanoscopic structure where {\em pure} spin current is induced in the transverse voltage probes attached to {\em quantum-coherent} one-dimensional ring when conventional unpolarized charge current is injected through its longitudinal leads. Tuning of the Rashba spin-orbit coupling in semiconductor heterostructure hosting the ring generates quasi-periodic oscillations of the predicted spin Hall current due to {\em spin-sensitive quantum-interference effects} caused by the difference in Aharonov-Casher phase acquired by opposite spins states traveling clockwise and counterclockwise. Its amplitude is comparable to the mesoscopic spin Hall current predicted for finite-size two-dimensional electron gases, while it gets reduced in wide two-dimensional or disordered rings.Comment: 5 pages, 4 color figure

    Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms

    Full text link
    The recent fabrication of graphene nanoribbon (GNR) field-effect transistors poses a challenge for first-principles modeling of carbon nanoelectronics due to many thousand atoms present in the device. The state of the art quantum transport algorithms, based on the nonequilibrium Green function formalism combined with the density functional theory (NEGF-DFT), were originally developed to calculate self-consistent electron density in equilibrium and at finite bias voltage (as a prerequisite to obtain conductance or current-voltage characteristics, respectively) for small molecules attached to metallic electrodes where only a few hundred atoms are typically simulated. Here we introduce combination of two numerically efficient algorithms which make it possible to extend the NEGF-DFT framework to device simulations involving large number of atoms. We illustrate fusion of these two algorithms into the NEGF-DFT-type code by computing charge transfer, charge redistribution and conductance in zigzag-GNR/variable-width-armchair-GNR/zigzag-GNR two-terminal device covered with a gate electrode made of graphene layer as well. The total number of carbon and edge-passivating hydrogen atoms within the simulated central region of this device is ~7000. Our self-consistent modeling of the gate voltage effect suggests that rather large gate voltage might be required to shift the band gap of the proposed AGNR interconnect and switch the transport from insulating into the regime of a single open conducting channel.Comment: 19 pages, 8 PDF figures, PDFLaTe
    • …
    corecore