4 research outputs found

    SIZE-DEPENDENT PHONON-ASSISTED ANTI-STOKES PHOTOLUMINESCENCE IN NANOCRYSTALS OF ORGANOMETAL PEROVSKITES

    Get PDF
    Anti-Stokes photoluminescence (ASPL), which is an up-conversion phonon-assisted process of the radiative recombination of photoexcited charge carriers, was investigated in methylammonium lead bromide (MALB) perovskite nanocrystals (NCs) with mean sizes that varied from about 6 to 120 nm. The structure properties of the MALB NCs were investigated by means of the scanning and transmission electron microscopy, X-ray diffraction and Raman spectroscopy. ASPL spectra of MALB NCs were measured under near-resonant laser excitation with a photon energy of 2.33 eV and they were compared with the results of the photoluminescence (PL) measurements under nonresonant excitation at 3.06 eV to reveal a contribution of phonon-assisted processes in ASPL. MALB NCs with a mean size of about 6 nm were found to demonstrate the most efficient ASPL, which is explained by an enhanced contribution of the phonon absorption process during the photoexcitation of small NCs. The obtained results can be useful for the application of nanocrystalline organometal perovskites in optoelectronic and all-optical solid-state cooling devices

    Anti-Stokes Photoluminescence in Halide Perovskite Nanocrystals: From Understanding the Mechanism towards Application in Fully Solid-State Optical Cooling

    No full text
    Anti-Stokes photoluminescence (ASPL) is an up-conversion phonon-assisted process of radiative recombination of photoexcited charge carriers when the ASPL photon energy is above the excitation one. This process can be very efficient in nanocrystals (NCs) of metalorganic and inorganic semiconductors with perovskite (Pe) crystal structure. In this review, we present an analysis of the basic mechanisms of ASPL and discuss its efficiency depending on the size distribution and surface passivation of Pe-NCs as well as the optical excitation energy and temperature. When the ASPL process is sufficiently efficient, it can result in an escape of most of the optical excitation together with the phonon energy from the Pe-NCs. It can be used in optical fully solid-state cooling or optical refrigeration

    Effect of Silicate Additive on Structural and Electrical Properties of Germanium Nanowires Formed by Electrochemical Reduction from Aqueous Solutions

    No full text
    Layers of germanium (Ge) nanowires (NWs) on titanium foils were grown by metal-assisted electrochemical reduction of germanium oxide in aqueous electrolytes based on germanium oxide without and with addition of sodium silicate. Structural properties and composition of Ge NWs were studied by means of the scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy. When sodium silicate was added to the electrolyte, Ge NWs consisted of 1–2 at.% of silicon (Si) and exhibited smaller mean diameter and improved crystallinity. Additionally, samples of Ge NW films were prepared by ultrasonic removal of Ge NWs from titanium foils followed with redeposition on corundum substrates with platinum electrodes. The electrical conductivity of Ge NW films was studied at different temperatures from 25 to 300 °C and an effect of the silicon impurity on the thermally activated electrical conductivity was revealed. Furthermore, the electrical conductivity of Ge NW films on corundum substrates exhibited a strong sensor response on the presence of saturated vapors of different liquids (water, acetone, ethanol, and isopropanol) in air and the response was dependent on the presence of Si impurities in the nanowires. The results obtained indicate the possibility of controlling the structure and electrical properties of Ge NWs by introducing silicate additives during their formation, which is of interest for applications in printed electronics and molecular sensorics
    corecore