323 research outputs found

    Development and improvement of lost foam casting technology based on mathematical modeling

    No full text
    A detailed analysis of the process of filling the mould for lost foam casting technology was made based on a mathematical model, that takes into account the emergence of low-frequency oscillations. The optimum range of technological parameters for a few specific details were discovered. The factors that may lead to the release of metal and to mould collapse were also identified

    Development and improvement of lost foam casting technology based on mathematical modeling

    No full text
    A detailed analysis of the process of filling the mould for lost foam casting technology was made based on a mathematical model, that takes into account the emergence of low-frequency oscillations. The optimum range of technological parameters for a few specific details were discovered. The factors that may lead to the release of metal and to mould collapse were also identified

    Transfer Hydrogenation of Biomass-Like Phenolic Compounds and 2-PrOH over Ni-Based Catalysts Prepared Using Supercritical Antisolvent Coprecipitation

    No full text
    Transfer hydrogenation (TH) is considered as one of the most promising ways to convert biomass into valuable products. This study aims to demonstrate the performance of high-loaded Ni-based catalysts in the TH of phenolic compounds such as guaiacol and dimethoxybenzenes. The experiments were carried out under supercritical conditions at 250 °C using 2-PrOH as the only hydrogen donor. Ni-SiO2 and NiCu-SiO2 were synthesized using the eco-friendly original method based on supercritical antisolvent coprecipitation. It has been found that guaiacol is rapidly converted into 2-methoxycyclohexanol and cyclohexanol, while the presence of Cu impedes the formation of the latter product. Transformations of dimethoxybenzene position isomers are slower and result in different products. Thus, 1,3-dimethoxybenzene loses oxygen atoms transform into methoxycyclohexane and cyclohexanol, whereas the saturation of the aromatic ring is more typical for other isomers. The Cu addition increases specific catalytic activity in the TH of 1,2-and 1,3-dimethoxybenzene compared to the Cu-free catalyst

    Extreme and Topological Dissipative Solitons with Structured Matter and Structured Light

    No full text
    Structuring of matter with nanoobjects allows one to generate soliton-like light bundles with extreme characteristics—temporal duration and spatial dimensions. On the other hand, structuring of light gives the possibility to form light bundles with complicated internal structure; their topology could be used for information coding similar to that in self-replicating RNA molecules carrying genetic code. Here we review the both variants of structuring. In the first variant, we consider a linear molecular chain and organic film interacting resonantly with laser radiation. Demonstrated are optical bistability, switching waves, and dissipative solitons, whose sizes for molecular J-aggregates can reach the nanometer range. We also discuss some theoretical approaches to take into account multi-particle interaction and correlations between molecules. In the second variant, light structuring in large-size laser medium with saturable amplification and absorption is achieved by preparation of the initial field distribution with a number of closed and unclosed vortex lines where the field vanishes. Various types of topological solitons, parameter domains of their stability, and transformation of the solitons with slow variation of the scheme parameters are presented

    Liquid-liquid Phase Separation as a Common Organizing Principle of Intracellular Space and Biomembranes Providing Dynamic Adaptive Responses

    No full text
    This work is devoted to the phenomenon of liquid-liquid phase separation (LLPS), which has come to be recognized as fundamental organizing principle of living cells. We distinguish separation processes with different dimensions. Well-known 3D-condensation occurs in aqueous solution and leads to membraneless organelle (MLOs) formation. 2D-films may be formed near membrane surfaces and lateral phase separation (membrane rafts) occurs within the membranes themselves. LLPS may also occur on 1D structures like DNA and the cyto- and nucleoskeleton. Phase separation provides efficient transport and sorting of proteins and metabolites, accelerates the assembly of metabolic and signaling complexes, and mediates stress responses. In this work, we propose a model in which the processes of polymerization (1D structures), phase separation in membranes (2D structures), and LLPS in the volume (3D structures) influence each other. Disordered proteins and whole condensates may provide membrane raft separation or polymerization of specific proteins. On the other hand, 1D and 2D structures with special composition or embedded IDRs can nucleate condensates. We hypothesized that environmental change may trigger a LLPS which can propagate within the cell interior moving along the cytoskeleton or as an autowave. New phase propagation quickly and using a low amount of energy adjusts cell signaling and metabolic systems to new demands. Cumulatively, the interconnected phase separation phenomena in different dimensions represent a previously unexplored system of intracellular communication and regulation which cannot be ignored when considering both physiological and pathological cell processes

    Advanced High-Loaded Ni–Cu Catalysts in Transfer Hydrogenation of Anisole: Unexpected Effect of Cu Addition

    No full text
    Binary Ni–Cu heterogeneous catalysts are known to demonstrate excellent activity in conventional hydrogenation of phenolic compounds, and Cu addition facilitates hydrodeoxygenation (HDO). In this study, we aimed to show the effect of Cu on the specific catalytic activity and selectivity of Ni–Cu catalysts in transfer hydrogenation, in which 2-PrOH was used as a solvent and an H donor. Catalytic transformations of anisole were studied in sub- and supercritical alcohol at 150 and 250 °C. The catalysts were prepared using an environmentally friendly supercritical antisolvent coprecipitation method, which makes it possible to obtain well-dispersed particles (less than 7 nm) at high metal loading (up to 50 wt.%). When copper is added, deactivation of the catalyst in transformations of anisole, including HDO, is observed. The experimental data and the appropriate kinetic analysis demonstrate that there is a decrease in the rate of anisole conversion accompanied by an increase in the concentration of acetone formed during the dehydrogenation of 2-PrOH

    Synthesis of Catalytic Precursors Based on Mixed Ni-Al Oxides by Supercritical Antisolvent Co-Precipitation

    No full text
    Mixed Ni-Al oxide catalytic precursors with different elemental ratios (20, 50, and 80 wt.% Ni0) were synthesized using green supercritical antisolvent co-precipitation (SAS). The obtained oxide precursors and metal catalysts were characterized in detail by X-ray diffraction (XRD) analysis, atomic pair distribution function (PDF) analysis, CO adsorption, and high-resolution transmission electron microscopy (HRTEM). It was found that the composition and structure of the Ni-Al precursors are related to the Ni content. The mixed Ni1−xAlxO oxide with NiO-based crystal structure was formed in the Ni-enriched sample, whereas the highly dispersed NiAl2O4 spinel was observed in the Al-enriched sample. The obtained metal catalysts were tested in the process of anisole H2-free hydrogenation. 2-PrOH was used as a hydrogen donor. The catalyst with 50 wt.% Ni0 demonstrated the highest activity in the hydrogenation process

    Synthesis of Co-Ni Alloy Particles with the Structure of a Solid Substitution Solution by Precipitation in a Supercritical Carbon Dioxide

    No full text
    Mixed Co-Ni bimetallic systems with the structure of a solid substitution solution have been synthesized using the supercritical antisolvent precipitation (SAS) method, which uses supercritical CO2 as an antisolvent. The systems obtained have been characterized in detail using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared (FTIR) spectroscopy, and magnetostatic measurements. It has been found that Co-enriched systems have a defective hexagonal close-packed (hcp) structure, which was described by a model which embedded cubic fragments of packaging into a hexagonal close-packed (hcp) structure. It has been shown that an increase in water content at the precipitation stage leads to a decrease in the size of cubic fragments and a more uniform distribution of them in Co-enriched systems. It has also been shown that mixed systems have the greatest coercivity in the line of samples. Ni-enriched bimetallic systems have a cubic close-packed (ccp) structure with modified crystal lattice parameters

    On the Role of Normal Aging Processes in the Onset and Pathogenesis of Diseases Associated with the Abnormal Accumulation of Protein Aggregates

    No full text
    Aging is a prime systemic cause of various age-related diseases, in particular, proteinopathies. In fact, most diseases associated with protein misfolding are sporadic, and their incidence increases with aging. This review examines the process of protein aggregate formation, the toxicity of such aggregates, the organization of cellular systems involved in proteostasis, and the impact of protein aggregates on important cellular processes leading to proteinopathies. We also analyze how manifestations of aging (mitochondrial dysfunction, dysfunction of signaling systems, changes in the genome and epigenome) facilitate pathogenesis of various proteinopathies either directly, by increasing the propensity of key proteins for aggregation, or indirectly, through dysregulation of stress responses. Such analysis might help in outlining approaches for treating proteinopathies and extending healthy longevity

    Multipurpose monitoring system for icebreakers: Development, implementation, and testing

    No full text
    We demonstrate the results of a project on implementing a complete and practical multipurpose monitoring system for icebreakers. We describe the basic principles of operating the developed monitoring system. We present a 3D finite element analysis of the ship model to optimise the sensor arrangement. We also present the benchmarks and test results of the system during an expedition on the Russian scientific research vessel Akademik Tryoshnikov
    • …
    corecore