57 research outputs found

    Proof of W.M.Schmidt's conjecture concerning successive minima of a lattice

    Get PDF
    For a real N1N\ge 1 and a vector ξ=(1,ξ1,...,ξn)\xi =(1,\xi_1,...,\xi_n) define a matrix {\cal A} (\xi, N) = ({array}{ccccc} N^{-1} & 0& 0& ... &0 \cr N^{\frac{1}{n}} \xi_1 & -N^{\frac{1}{n}} & 0&... & 0 \cr N^{\frac{1}{n}} \xi_2 &0& -N^{\frac{1}{n}} & ... & 0 \cr ... &... &... &... \cr N^{\frac{1}{n}} \xi_n &0&0&... &- N^{\frac{1}{n}} {array}) and a lattice Λ(ξ,N)=A(ξ,N)Zn+1. \Lambda (\xi, N) = {\cal A} (\xi, N)\mathbb{Z}^{n+1}. Consider a convex 0-symmetric body W={z=(x,y1,...,yn)Rn+1:max(x,y)1}>.{\cal W} = \{z= (x,y_1,...,y_n)\in \mathbb{R}^{n+1}: \max (|x|, |y|)\le 1 \} >. For a natural l,1ln+1l, 1\le l \le n+1 let μl(ξ,N)\mu_l (\xi, N) be the ll-th successive minimum of W{\cal W} with respect to Λ(ξ,N) \Lambda (\xi, N). We prove that there exist real numbers ξ1,...,ξn\xi_1,...,\xi_n linearly independent together with 1 over Z\mathbb{Z}, such that μk(ξ,N)0\mu_k (\xi, N) \to 0 as N N\to \infty and μk+2(ξ,N)\mu_{k+2} (\xi, N) \to \infty as N N\to \infty.Comment: Submitted to Proceedings of LMS, further minor correction
    corecore