8 research outputs found

    Revealing Josephson vortex dynamics in proximity junctions below critical current

    Get PDF
    Made of a thin non-superconducting metal (N) sandwiched by two superconductors (S), SNS Josephson junctions enable novel quantum functionalities by mixing up the intrinsic electronic properties of N with the superconducting correlations induced from S by proximity. Electronic properties of these devices are governed by Andreev quasiparticles [1] which are absent in conventional SIS junctions whose insulating barrier (I) between the two S electrodes owns no electronic states. Here we focus on the Josephson vortex (JV) motion inside Nb-Cu-Nb proximity junctions subject to electric currents and magnetic fields. The results of local (Magnetic Force Microscopy) and global (transport) experiments provided simultaneously are compared with our numerical model, revealing the existence of several distinct dynamic regimes of the JV motion. One of them, identified as a fast hysteretic entry/escape below the critical value of Josephson current, is analyzed and suggested for low-dissipative logic and memory elements.Comment: 11 pages, 3 figures, 1 table, 43 reference

    Safety and efficacy of convalescent plasma for COVID-19: the preliminary results of a clinical trial

    Get PDF
    Background. The lack of effective etiotropic therapy for COVID-19 has prompted researchers around the globe to seekr various methods of SARS-CoV-2 elimination, including the use of convalescent plasma. Aim. The aim of this work was to study the safety and efficacy of the convalescence plasma treatment of severe COVID-19 using the plasma containing specific antibodies to the receptor binding domain (RBD) of SARS-CoV-2 S protein in a titer of at least 1:1000. Methods. A single-center, randomized, prospective clinical study was performed at the FRCC FMBA of Russia with the participation of 86 patients who were stratified in two groups. The first group included 20 critically ill patients who were on mechanical ventilation the second group included 66 patients with moderate to severe COVID-19 and with spontaneous respiration. The patients in the second group were randomized into two cohorts in a ratio of 2:1. In the first cohort (46 patients), pathogen-reduced convalescent plasma was transfused (twice, 320 ml each), in the second cohort (20 patients) a similar amount of non-immune freshly frozen plasma was transfused to the patients. Results. The use of plasma of convalescents in patients with severe COVID-19 being on mechanical ventilation does not affect the disease outcome in these patients. The mortality rate in this group was 60%, which corresponds to the average mortality of COVID patients on mechanical ventilation in our hospital. In the second group, clinical improvement was detected in 75% and 51%, for convalescent and non-immune plasma, respectively. Of the 46 people who received convalescent plasma, three patients (6.5%) were transferred to mechanical ventilation, two of them died. In the group receiving non-immune plasma, the need for mechanical ventilation also arose in three patients (15%), of which two died. The hospital mortality in the group of convalescent plasma was 4.3%, which is significantly lower than the average COVID-19 hospital mortality at our Center (6.73%) and more than two times lower than the hospital mortality in the control group (n=150), matched by age and by the disease severity. Conclusions. Thus, we demonstrated a relative safety of convalescent plasma transfusion and the effectiveness of such therapy for COVID-19 at least in terms of the survival of hospitalized patients with severe respiratory failure without mechanical ventilation. In the absence of bioengineered neutralizing antibodies and effective etiotropic therapy, the use of hyperimmune convalescent plasma is the simplest and most effective method of specific etiopathogenetic therapy of severe forms of COVID-19

    Electronic Atlas of Climatic Changes in the Western Russian Arctic in 1950–2021 as Geoinformatic Support of Railway Development

    No full text
    The Arctic zone of the Russian Federation is one of the most intensively developing regions of the country. Amongst the major domains of economic and industrial growth and improvement is transport infrastructure and particularly the railway network. This area is being exposed to negative factors of rapid climate change that can significantly affect and compromise this activity. Thus, it is vital to take them into account during design, construction, and operation of the railway infrastructure facilities. This work details the production of a digital atlas comprising the 1950–2021 dynamics of the main hydrometeorological parameters: air and soil temperature, precipitation, wind speed, air and soil humidity, and snow cover thickness. The maps are based on climatic data derived from the MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, version 2) reanalysis. In total there are 459, which are arranged into 7 chapters. The atlas geographically covers the western part of the Russian Arctic encompassing the regions of quite intensive transport development, which includes the construction of the Northern Latitudinal Railway. Original algorithms of geospatial data processing and their further representation as well as the maps compiled in GIS environment are discussed. Comprehensive analysis of climatic changes in the region of the Russian Arctic including detailed quantitative evaluation over 40 years is given. In the Discussion, we focus on those changes of the regional climate which, from our point of view, are the most significant for consideration by railway operators. The obtained results contribute to framing the theoretical basis of design, development, and sustainable operation of the railway infrastructure in the Arctic and facilitate the decision-making process. This is the first experience of building a specialized climatic cartographic product for the needs of the Russian railways, and to our knowledge the first atlas such as that in the world. In the future, the amassed experience may be transferred to other regions of the Russian Federation as well as similar regions in Canada, Sweden and Highland China that are also subject to significant climate change

    Revealing Josephson Vortex Dynamics in Proximity Junctions below Critical Current

    No full text
    Made of a thin non-superconducting metal (N) sandwiched by two superconductors (S), SNS Josephson junctions enable novel quantum functionalities by mixing up the intrinsic electronic properties of N with the superconducting correlations induced from S by proximity. Electronic properties of these devices are governed by Andreev quasiparticles (Andreev, A. Sov. Phys. JETP 1965, 20, 1490) which are absent in conventional SIS junctions whose insulating barrier (I) between the two S electrodes owns no electronic states. Here we focus on the Josephson vortex (JV) motion inside Nb-Cu-Nb proximity junctions subject to electric currents and magnetic fields. The results of local (magnetic force microscopy) and global (transport) experiments provided simultaneously are compared with our numerical model, revealing the existence of several distinct dynamic regimes of the JV motion. One of them, identified as a fast hysteretic entry/escape below the critical value of Josephson current, is analyzed and suggested for low-dissipative logic and memory elements

    Superconducting Bio-Inspired Au-Nanowire-Based Neurons

    No full text
    High-performance modeling of neurophysiological processes is an urgent task that requires new approaches to information processing. In this context, two- and three-junction superconducting quantum interferometers with Josephson weak links based on gold nanowires are fabricated and investigated experimentally. The studied cells are proposed for the implementation of bio-inspired neurons—high-performance, energy-efficient, and compact elements of neuromorphic processor. The operation modes of an advanced artificial neuron capable of generating the burst firing activation patterns are explored theoretically. A comparison with the Izhikevich mathematical model of biological neurons is carried out
    corecore