141 research outputs found

    Rolling-Shutter Modelling for Direct Visual-Inertial Odometry

    Full text link
    We present a direct visual-inertial odometry (VIO) method which estimates the motion of the sensor setup and sparse 3D geometry of the environment based on measurements from a rolling-shutter camera and an inertial measurement unit (IMU). The visual part of the system performs a photometric bundle adjustment on a sparse set of points. This direct approach does not extract feature points and is able to track not only corners, but any pixels with sufficient gradient magnitude. Neglecting rolling-shutter effects in the visual part severely degrades accuracy and robustness of the system. In this paper, we incorporate a rolling-shutter model into the photometric bundle adjustment that estimates a set of recent keyframe poses and the inverse depth of a sparse set of points. IMU information is accumulated between several frames using measurement preintegration, and is inserted into the optimization as an additional constraint between selected keyframes. For every keyframe we estimate not only the pose but also velocity and biases to correct the IMU measurements. Unlike systems with global-shutter cameras, we use both IMU measurements and rolling-shutter effects of the camera to estimate velocity and biases for every state. Last, we evaluate our system on a novel dataset that contains global-shutter and rolling-shutter images, IMU data and ground-truth poses for ten different sequences, which we make publicly available. Evaluation shows that the proposed method outperforms a system where rolling shutter is not modelled and achieves similar accuracy to the global-shutter method on global-shutter data

    Diatom species richness in Swiss springs increases with habitat complexity and elevation

    Full text link
    Understanding the drivers of species richness gradients is a central challenge of ecological and biodiversity research in freshwater science. Species richness along elevational gradients reveals a great variety of patterns. Here, we investigate elevational changes in species richness and turnover between microhabitats in near-natural spring habitats across Switzerland. Species richness was determined for 175 subsamples from 71 near-natural springs, and Poisson regression was applied between species richness and environmental predictors. Compositional turnover was calculated between the different microhabitats within single springs using the Jaccard index based on observed species and the Chao index based on estimated species numbers. In total, 539 diatom species were identified. Species richness increased monotonically with elevation. Habitat diversity and elevation explaining some of the species richness per site. The Jaccard index for the measured compositional turnover showed a mean similarity of 70% between microhabitats within springs, whereas the Chao index which accounts for sampling artefacts estimated a turnover of only 37%. Thus, the commonly applied method of counting 500 valves led to an undersampling of the rare species and might need to be reconsidered when assessing diatom biodiversity

    Microbial keratitis-induced endophthalmitis: incidence, symptoms, therapy, visual prognosis and outcomes

    Get PDF
    Background: To evaluate symptoms, therapies and outcomes in rare microbial keratitis-induced endophthalmitis. Methods: Retrospective study with 11 patients treated between 2009 and 2014. Clinical findings, corneal diseases, history of steroids and trauma, use of contact lenses, number and type of surgical interventions, determination of causative organisms and visual acuity (VA) were evaluated. Results: The incidence of transformation from microbial keratitis to an endophthalmitis was 0.29% (n = 11/3773). In 90.9% (n = 10/11), there were pre-existent eyelid and corneal problems, in 45.5% (n = 5/11) rubeosis iridis with increased intraocular pressure and corneal decompensation, and in 18.2% (n = 2/11), ocular trauma. Specimens could be obtained in 10 of 11 samples: 33.3% of those 10 specimens were Gram-positive coagulase-negative Staphylococci (n = 3/10) or Gram-negative rods (n = 3/10) and 10.0% Staphylococcus aureus (n = 1/10). In 30% (n = 3/10), no pathogens were identifiable. 72.7% (n = 8/11) of all keratitis-induced endophthalmitis were treated with vitrectomy and 9.1% (n = 1/11) with amniotic-membrane transplantation. In 27.3% (n = 3/11) the infected eye had to be enucleated – 18.2% (n = 2/11) primarily, 9.1% (n = 1/11) secondarily. No patient suffered from sympathetic ophthalmia. The median initial VA was 2.1 logMAR (n = 11/11). At one month, median VA was 2.0 logMAR (n = 7/11), after three months 2.0 logMAR (n = 6/11), and after one year 2.05 logMAR (n = 6/11). The change in VA was not significant (p > 0.99). 36.4% (n = 4/11) of the cases resulted in blindness. Conclusions: The overall outcome is poor. Enucleation should be weighed against the risk of local and systemic spread of the infection, prolonged rehabilitation and sympathetic ophthalmia

    Superior SARS-CoV-2 RBD antigen designs for highly specific, quantitative serotests

    Get PDF
    Quantitative high-quality SARS-CoV-2 serotests that are easy-to-implement have been gaining great importance as means to characterize and monitor the magnitude of infection- or vaccine-induced immunity over time and are of particular interest for academic laboratories doing COVID-19 research or small diagnostic laboratories with basic equipment Please click Download on the upper right corner to see the full abstract

    Human Cutaneous Dendritic Cells Migrate Through Dermal Lymphatic Vessels in a Skin Organ Culture Model

    Get PDF
    The capacity to migrate from peripheral tissues, where antigen is encountered, to lymphoid organs, where the primary immune response is initiated, is crucial to the immunogenic function of dendritic cells (DC). The skin is a suitable tissue to study migration. DC were observed to gather in distinct nonrandom arrays (“cords”) in the dermis upon culture of murine whole skin explants. It is assumed that cords represent lymphatic vessels. Using a similar organ culture model with human split-thickness skin explants, we investigated migration pathways in human skin.We made the following observations. 1) Spontaneous emigration of Langerhans cells took place in skin cultured for 1–3 d. Nonrandom distribution patterns of strongly major histocompatibility complex class II-expressing DC (cords) occurred in cultured dermis. A variable, yet high (>50%) percentage of these DC coexpressed the Birbeck granule-associated antigen “Lag” Ultrastructurally, the cells corresponded to mature DC. 2) Electron microscopy proved that the dermal structures harboring the accumulations of DC (i.e., cords) were typical lymph vessels. Moreover, markers for blood endothelia (monoclonal antibody PAL-E, Factor VIII-related antigen) and markers for cords (strong major histocompatibility complex class II expression on nonrandomly arranged, hairy-appearing cells) were expressed in a mutually exclusive pattern. 3) On epidermal sheets we failed to detect gross changes in the levels of expression of adhesion molecules (CD44, CD54/ICAM-1, E-cadherin) on keratinocytes in the course of the culture period.The reactivity of a part of the DC in the dermal cords with Birbeck granule-specific monoclonal antibody “Lag” suggests that the migratory population is composed of both epidermal Langerhans cells and dermal DC. We conclude that this organ culture model may prove helpful in resolving pathways and mechanisms of DC migration
    • …
    corecore