31 research outputs found

    jCompoundMapper: An open source Java library and command-line tool for chemical fingerprints

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decomposition of a chemical graph is a convenient approach to encode information of the corresponding organic compound. While several commercial toolkits exist to encode molecules as so-called fingerprints, only a few open source implementations are available. The aim of this work is to introduce a library for exactly defined molecular decompositions, with a strong focus on the application of these features in machine learning and data mining. It provides several options such as search depth, distance cut-offs, atom- and pharmacophore typing. Furthermore, it provides the functionality to combine, to compare, or to export the fingerprints into several formats.</p> <p>Results</p> <p>We provide a Java 1.6 library for the decomposition of chemical graphs based on the open source Chemistry Development Kit toolkit. We reimplemented popular fingerprinting algorithms such as depth-first search fingerprints, extended connectivity fingerprints, autocorrelation fingerprints (e.g. CATS2D), radial fingerprints (e.g. Molprint2D), geometrical Molprint, atom pairs, and pharmacophore fingerprints. We also implemented custom fingerprints such as the all-shortest path fingerprint that only includes the subset of shortest paths from the full set of paths of the depth-first search fingerprint. As an application of jCompoundMapper, we provide a command-line executable binary. We measured the conversion speed and number of features for each encoding and described the composition of the features in detail. The quality of the encodings was tested using the default parametrizations in combination with a support vector machine on the Sutherland QSAR data sets. Additionally, we benchmarked the fingerprint encodings on the large-scale Ames toxicity benchmark using a large-scale linear support vector machine. The results were promising and could often compete with literature results. On the large Ames benchmark, for example, we obtained an AUC ROC performance of 0.87 with a reimplementation of the extended connectivity fingerprint. This result is comparable to the performance achieved by a non-linear support vector machine using state-of-the-art descriptors. On the Sutherland QSAR data set, the best fingerprint encodings showed a comparable or better performance on 5 of the 8 benchmarks when compared against the results of the best descriptors published in the paper of Sutherland et al.</p> <p>Conclusions</p> <p>jCompoundMapper is a library for chemical graph fingerprints with several tweaking possibilities and exporting options for open source data mining toolkits. The quality of the data mining results, the conversion speed, the LPGL software license, the command-line interface, and the exporters should be useful for many applications in cheminformatics like benchmarks against literature methods, comparison of data mining algorithms, similarity searching, and similarity-based data mining.</p

    Efficient extraction of canonical spatial relationships using a recursive enumeration of k-subsets

    Get PDF
    The spatial arrangement of a chemical compound plays an important role regarding the related properties or activities. A straightforward approach to encode the geometry is to enumerate pairwise spatial relationships between k substructures, like functional groups or subgraphs. This leads to a combinatorial explosion with th

    Optimal assignment methods for ligand-based virtual screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ligand-based virtual screening experiments are an important task in the early drug discovery stage. An ambitious aim in each experiment is to disclose active structures based on new scaffolds. To perform these "scaffold-hoppings" for individual problems and targets, a plethora of different similarity methods based on diverse techniques were published in the last years. The optimal assignment approach on molecular graphs, a successful method in the field of quantitative structure-activity relationships, has not been tested as a ligand-based virtual screening method so far.</p> <p>Results</p> <p>We evaluated two already published and two new optimal assignment methods on various data sets. To emphasize the "scaffold-hopping" ability, we used the information of chemotype clustering analyses in our evaluation metrics. Comparisons with literature results show an improved early recognition performance and comparable results over the complete data set. A new method based on two different assignment steps shows an increased "scaffold-hopping" behavior together with a good early recognition performance.</p> <p>Conclusion</p> <p>The presented methods show a good combination of chemotype discovery and enrichment of active structures. Additionally, the optimal assignment on molecular graphs has the advantage to investigate and interpret the mappings, allowing precise modifications of internal parameters of the similarity measure for specific targets. All methods have low computation times which make them applicable to screen large data sets.</p

    Cover art to "25 years of small molecule optimization at Novartis: A retrospective analysis of chemical series evolution"

    No full text
    In the internal Novartis compound databases, a set of ~3000 chemical series has been retrospectively reconstructed. Using the registration dates of the compounds, the evolution over time of structural properties, ADMET and target activities during optimization of the compounds has been analyzed, which revealed multiple trends. Furthermore, general properties of the chemical series and their inter-relations are investigated

    25 Years of Small-Molecule Optimization at Novartis: A Retrospective Analysis of Chemical Series Evolution.

    No full text
    In the drug development process, optimization of properties and biological activities of small molecules is an important task to obtain drug candidates with optimal efficacy when first applied in subsequent clinical studies. However, despite its importance, large-scale investigations of the optimization process in early drug discovery are lacking, likely due to the absence of historical records of different chemical series used in past projects. Here, we report a retrospective reconstruction of ∼3000 chemical series from the Novartis compound database, which allows us to characterize the general properties of chemical series as well as the time evolution of structural properties, ADMET properties, and target activities. Our data-driven approach allows us to substantiate common MedChem knowledge. We find that size, fraction of sp3-hybridized carbon atoms (Fsp3), and the density of stereocenters tend to increase during optimization, while the aromaticity of the compounds decreases. On the ADMET side, solubility tends to increase and permeability decreases, while safety-related properties tend to improve. Importantly, while ligand efficiency decreases due to molecular growth over time, target activities and lipophilic efficiency tend to improve. This emphasizes the heavy-atom count and log D as important parameters to monitor, especially as we further show that the decrease in permeability can be explained with the increase in molecular size. We highlight overlaps, shortcomings, and differences of the computationally reconstructed chemical series compared to the series used in recent internal drug discovery projects and investigate the relation to historical projects
    corecore