22 research outputs found
Epigenetic Profiling and Molecular Characterisation of Non-melanoma Skin Cancer
PhDNon-melanoma skin (NMSC) cancer is the most common human malignancy. Cutaneous
squamous cell carcinoma (cSCC) and its precursor, actinic keratosis (AK) affect tens of
thousands of people each year in the UK. Merkel cell carcinoma is a rare, yet aggressive type of
NMSC recently linked with Merkel Cell Polyomavirus (MCPyV). In spite of the clinical burden of
NMSC, key molecular regulatory patterns remain largely unknown. The aims of this thesis were to
investigate genome-wide genetic, epigenetic and transcriptional changes in AK and cSCC, and
assess the prevalence of MCPyV and its effect on methylation in NMSC.
Copy-number analysis revealed that AK harbours significantly more genomic aberrations
compared to skin, the majority of which occurs on chromosomes 8 and 9. Transcriptional profiling
has found 292 and 308 genes as differentially expressed in AK compared to non-sunexposed and
sun-exposed skin, respectively, and gene-set enrichment analysis (GSEA) revealed dysregulation
of PPAR pathway in this lesion.
Expression profiling of cSCC and AK has revealed 346 differentially expressed genes, and GSEA
detected dysregulation in several canonical pathways including TGF-β and MAPK pathway.
Aberrant methylation in cSCC cell lines occurs in the promoters of many developmental genes. A
total of 1085 hyper- and 833 hypomethylated genes were detected in cSCCs, and GSEA revealed
dysregulation of critical signalling pathways (WNT, MAPK signalling pathways). Methylation
analysis of AK revealed a total of 4194 differentially methylated genes, and implicated FOXF2,
PITX2, RUNX1 and SMAD3 transcription factors in this lesions.
MiRNA profiling of cSCC and normal skin revealed significant dysregulation of 38 miRNAs
including several of viral origin.
MCPyV was shown to be common in NMSC, yet MCPyV nor human papillomavirus does not
affect cSCC methylation.
Taken together, this work provides novel insight into molecular regulation of cSCC oncogenesis,
and identifies potential epigenetic targets for functional evaluation in this malignancy.British Skin
Foundation and the Barts and the London Charity research grant
Effect of Helicobacter pylori infection on pregnancy rates and early pregnancy loss after intracytoplasmic sperm injection
Masomeh Hajishafiha1, Mohammad Ghasemi-rad1, Aishe Memari1, Siamak Naji1, Nikol Mladkova2, Vida Saeedi1 1Urmia University of Medical Sciences, Urmia, Iran; 2Institute of Cell and Molecular Science, London, UK Background: There is a need to elucidate what affects the implantation and early pregnancy course in pregnancies conceived with assisted reproductive technology (ART) so that pregnancy rates and outcomes can be improved. Our aim was to determine the role of maternal Helicobacter pylori infection. Material and methods: We did a prospective study of 187 infertile couples undergoing intracytoplasmic sperm injection (ICSI) and segregated those according to underlying infertility etiology. We assessed the status of H. pylori IgG antibodies and anti-CagA IgG antibodies by ELISA assay. All pregnancies were followed for early pregnancy loss (EPL, first 12 weeks). Results: The likelihood of H. pylori infection increased with age (1.01, 95% confidence interval [CI]: 1.0–1.13; P = 0.040) but there was no association with EPL. Women infected with CagA-positive strains were more likely to have EPL (19.39, 95% CI: 1.8–208.4; P = 0.014). Women with tubal factor or ovulatory disorder infertility were more likely to abort early (12.95, 95% CI: 1.28–131.11; P = 0.030, 10.84, 95% CI: 1.47–80.03; P = 0.020, respectively). There was no association between EPL and age, number of embryos formed or transferred, or number of oocytes retrieved. Conclusion: Our findings suggest that infection with CagA-positive H. pylori strains is linked to an increase in women's potential to abort early (possibly through increased release of inflammatory cytokines). In addition, tubal factor and ovulatory disorder infertility are linked to EPL after ICSI due to unknown mechanisms. Proposals to eradicate H. pylori infection prior to ICSI could lead to a decrease in EPL after ART.Keywords: Helicobacter pylori, early pregnancy loss, early abortion, infertility, intracytoplasmic sperm injection, Cag
A Unique Panel of Patient-Derived Cutaneous Squamous Cell Carcinoma Cell Lines Provides a Preclinical Pathway for Therapeutic Testing
Background: Cutaneous squamous cell carcinoma (cSCC) incidence continues to rise with increasing morbidity and mortality, with limited treatment options for advanced disease. Future improvements in targeted therapy will rely on advances in genomic/transcriptomic understanding and the use of model systems for basic research. We describe here the panel of 16 primary and metastatic cSCC cell lines developed and characterised over the past three decades in our laboratory in order to provide such a resource for future preclinical research and drug screening. Methods: Primary keratinocytes were isolated from cSCC tumours and metastases, and cell lines were established. These were characterised using short tandem repeat (STR) profiling and genotyped by whole exome sequencing. Multiple in vitro assays were performed to document their morphology, growth characteristics, migration and invasion characteristics, and in vivo xenograft growth. Results: STR profiles of the cSCC lines allow the confirmation of their unique identity. Phylogenetic trees derived from exome sequence analysis of the matched primary and metastatic lines provide insight into the genetic basis of disease progression. The results of in vivo and in vitro analyses allow researchers to select suitable cell lines for specific experimentation. Conclusions: There are few well-characterised cSCC lines available for widespread preclinical experimentation and drug screening. The described cSCC cell line panel provides a critical tool for in vitro and in vivo experimentation
The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis
Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10-12) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10-14), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10-103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10-49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10-93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10-23 and OR = 3.39, P = 5.2 × 10-82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20-37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk
GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway
Aberrant O-glycosylation of serum immunoglobulin A1 (IgA1) represents a heritable pathogenic defect in IgA nephropathy, the most common form of glomerulonephritis worldwide, but specific genetic factors involved in its determination are not known. We performed a quantitative GWAS for serum levels of galactose-deficient IgA1 (Gd-IgA1) in 2,633 subjects of European and East Asian ancestry and discovered two genome-wide significant loci, in C1GALT1 (rs13226913, P = 3.2 x 10-11) and C1GALT1C1 (rs5910940, P = 2.7 x 10-8). These genes encode molecular partners essential for enzymatic O-glycosylation of IgA1. We demonstrated that these two loci explain approximately 7% of variability in circulating Gd-IgA1 in Europeans, but only 2% in East Asians. Notably, the Gd-IgA1-increasing allele of rs13226913 is common in Europeans, but rare in East Asians. Moreover, rs13226913 represents a strong cis-eQTL for C1GALT1 that encodes the key enzyme responsible for the transfer of galactose to O-linked glycans on IgA1. By in vitro siRNA knock-down studies, we confirmed that mRNA levels of both C1GALT1 and C1GALT1C1 determine the rate of secretion of Gd-IgA1 in IgA1-producing cells. Our findings provide novel insights into the genetic regulation of O-glycosylation and are relevant not only to IgA nephropathy, but also to other complex traits associated with O-glycosylation defects, including inflammatory bowel disease, hematologic disease, and cancer