6 research outputs found

    Developing novel biointerfaces:using chlorhexidine surface attachment as a method for creating anti-fungal surfaces

    No full text
    There is an increasing focus in healthcare environments on combatting antimicrobial resistant infections. While bacterial infections are well reported, infections caused by fungi receive less attention, yet have a broad impact on society and can be deadly. Fungi are eukaryotes with considerable shared biology with humans, therefore limited technologies exist to combat fungal infections and hospital infrastructure is rarely designed for reducing microbial load. In this study, a novel antimicrobial surface (AMS) that is modified with the broad‐spectrum biocide chlorhexidine is reported. The surfaces are shown to kill the opportunistic fungal pathogens Candida albicans and Cryptococcus neoformans very rapidly (<15 min) and are significantly more effective than current technologies available on the commercial market, such as silver and copper

    Development of biocide coated polymers and their antimicrobial efficacy

    Get PDF
    Microbial contamination of plastic surfaces is a significant source of hospital‐acquired infections. To produce antimicrobial surfaces, chlorhexidine was attached to nitrided acrylonitrile butadiene styrene (ABS). The uniformity of chlorhexidine distribution on the plastic surfaces was revealed by time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) imaging. Its antimicrobial efficacy was established against model pathogenic Gram‐positive and Gram‐negative bacteria, fungi, and viruses. The stability of the bonded chlorhexidine was evaluated via a leaching test. The surfaces rapidly killed microbes: no viable colonies of Escherichia coli, Staphylococcus aureus, or Candida albicans were recoverable after 45 minutes. It was effective against SARS‐COV‐2, with no viable virions found after 30 minutes. Additionally, the surfaces were as effective in killing chlorhexidine‐resistant strains of bacteria as they were in killing naïve strains. The surface was stable; after 2 weeks of leaching, no detectable chlorhexidine was found in the leachate. We believe that the technology is widely applicable to prevent the spread of fomite infection
    corecore