11,031 research outputs found
Weighted Poisson-Delaunay Mosaics
Slicing a Voronoi tessellation in with a -plane gives a
-dimensional weighted Voronoi tessellation, also known as power diagram or
Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay
mosaic to the radius of the smallest empty circumscribed sphere whose center
lies in the -plane gives a generalized discrete Morse function. Assuming the
Voronoi tessellation is generated by a Poisson point process in ,
we study the expected number of simplices in the -dimensional weighted
Delaunay mosaic as well as the expected number of intervals of the Morse
function, both as functions of a radius threshold. As a byproduct, we obtain a
new proof for the expected number of connected components (clumps) in a line
section of a circular Boolean model in $\mathbb{R}^n
- …
