3 research outputs found
Mitogen-like Cerium-Based Nanoparticles Protect <i>Schmidtea mediterranea</i> against Severe Doses of X-rays
Novel radioprotectors are strongly demanded due to their numerous applications in radiobiology and biomedicine, e.g., for facilitating the remedy after cancer radiotherapy. Currently, cerium-containing nanomaterials are regarded as promising inorganic radioprotectors due to their unrivaled antioxidant activity based on their ability to mimic the action of natural redox enzymes like catalase and superoxide dismutase and to neutralize reactive oxygen species (ROS), which are by far the main damaging factors of ionizing radiation. The freshwater planarian flatworms are considered a promising system for testing new radioprotectors, due to the high regenerative potential of these species and an excessive amount of proliferating stem cells (neoblasts) in their bodies. Using planarian Schmidtea mediterranea, we tested CeO2 nanoparticles, well known for their antioxidant activity, along with much less studied CeF3 nanoparticles, for their radioprotective potential. In addition, both CeO2 and CeF3 nanoparticles improve planarian head blastema regeneration after ionizing irradiation by enhancing blastema growth, increasing the number of mitoses and neoblastsâ survival, and modulating the expression of genes responsible for the proliferation and differentiation of neoblasts. The CeO2 nanoparticlesâ action stems directly from their redox activity as ROS scavengers, while the CeF3 nanoparticlesâ action is mediated by overexpression of âwound-induced genesâ and neoblast- and stem cell-regulating genes
Hybrid Polyelectrolyte Capsules Loaded with Gadolinium-Doped Cerium Oxide Nanoparticles as a Biocompatible MRI Agent for Theranostic Applications
Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their unique advantages and capability in drug delivery applications. These ordered micro/nanostructures are also promising candidates as imaging contrast agents for diagnostic and theranostic applications. Magnetic resonance imaging (MRI), one of the most powerful clinical imaging modalities, is moving forward to the molecular imaging field and requires advanced imaging probes. This paper reports on a new design of MRI-visible LbL capsules, loaded with redox-active gadolinium-doped cerium oxide nanoparticles (CeGdO2âx NPs). CeGdO2âx NPs possess an ultrasmall size, high colloidal stability, and pronounced antioxidant properties. A comprehensive analysis of LbL capsules by TEM, SEM, LCSM, and EDX techniques was carried out. The research demonstrated a high level of biocompatibility and cellular uptake efficiency of CeGdO2âx-loaded capsules by cancer (human osteosarcoma and adenocarcinoma) cells and normal (human mesenchymal stem) cells. The LbL-based delivery platform can also be used for other imaging modalities and theranostic applications
The Strong Protective Action of Ce3+/F− Combined Treatment on Tooth Enamel and Epithelial Cells
We studied the toxic effects of cerium and fluoride species on human dental pulp stem cells and epithelial cells of Cercopithecus aethiops as a surrogate for the human oral mucosa. The sequential use of CeCl3 and NH4F solutions in equimolar sub-toxic concentrations enabled the possible toxic effects of individual components to be avoided, ensuring the preservation of the metabolic activity of the cells due to the formation of CeF3 nanoparticles. Cerium fluoride nanoparticles and terbium-doped cerium fluoride nanoparticles exhibited neither cytotoxicity nor genotoxicity to dental pulp stem cells, even at high concentrations (10−4 M). In millimolar concentrations (from 10−5–10−6 M), these nanoparticles significantly increased the expression of genes responsible for the cell cycle, differentiation and proliferation. The formation of cerium fluoride on the surface of the mucous membrane and teeth provided protection against the development of carious lesions, periodontitis, ROS attacks and other inflammatory diseases of the oral cavity. Luminescent CeF3: Tb nanoparticles enabled the visualization of tooth enamel microcracks