259 research outputs found
Transcriptomic Analysis of Young and Old Erythrocytes of Fish
Understanding gene expression changes over the lifespan of cells is of fundamental interest and gives important insights into processes related to maturation and aging. This study was undertaken to understand the global transcriptome changes associated with aging in fish erythrocytes. Fish erythrocytes retain their nuclei throughout their lifetime and they are transcriptionally and translationally active. However, they lose important functions during their lifespan in the circulation. We separated rainbow trout (Oncorhynchus mykiss) erythrocytes into young and old fractions using fixed angle-centrifugation and analyzed transcriptome changes using RNA sequencing (RNA-seq) technology and quantitative real-time PCR. We found 930 differentially expressed between young and old erythrocyte fractions; 889 of these showed higher transcript levels in young, while only 34 protein-coding genes had higher transcript levels in old erythrocytes. In particular genes involved in ion binding, signal transduction, membrane transport, and those encoding various enzyme classes are affected in old erythrocytes. The transcripts with higher levels in old erythrocytes were associated with seven different GO terms within biological processes and nine within molecular functions and cellular components, respectively. Our study furthermore found several highly abundant transcripts as well as a number of differentially expressed genes (DEGs) for which the protein products are currently not known revealing the gaps of knowledge in most non-mammalian vertebrates. Our data provide the first insight into changes involved in aging on the transcriptional level and thus opens new perspectives for the study of maturation processes in fish erythrocytes
Shoot growth and crown development: effect of crown position in three-dimensional simulations
Trees have been increasingly considered as modular organisms, with individual shoots forming autonomous units that respond semi-independently to their surrounding environment. However, there is evidence for fairly strict hormonal control of tree crown development. Studies on the hydraulic architecture of trees suggest a closer functional connection between shoots and crown development than is postulated by the theory of branch autonomy. We studied how shoot growth pattern influences growth and crown architecture in young Scots pine trees simulated by the LIGNUM model assuming that (a) the growth of a shoot mainly depends on its light climate and (b) the growth of a shoot is influenced by its position within the crown. We determined shoot position within the crown based on a recently developed vigor index. The vigor index compares the relative axis cross-sectional area from the base of the tree to each shoot and gives a value of 1 to the pathway of the greatest cross-sectional area. All other shoots attain values between 0 and 1 depending on their cross-sectional areas and the cross-sectional areas of the branches leading there from the main axis. The shoot light climate is characterized by annually intercepted photosynthetically active radiation. We compared the results from simulations (a) and (b) against an independent data set. The addition of a within-shoot position index (the vigor index) to our simulation (simulation b) resulted in a more realistic tree form than that obtained with simulation (a) alone. We discuss the functional significance of the results as well as the possibilities of using an index of shoot position in simulations of crown architecture
Circadian rhythms and environmental disturbancesâunderexplored interactions
Biological rhythms control the life of virtually all organisms, impacting numerous aspects ranging from subcellular processes to behaviour. Many studies have shown that changes in abiotic environmental conditions can disturb or entrain circadian (âŒ24â
h) rhythms. These expected changes are so large that they could impose risks to the long-term viability of populations. Climate change is a major global stressor affecting the fitness of animals, partially because it challenges the adaptive associations between endogenous clocks and temperature â consequently, one can posit that a large-scale natural experiment on the plasticity of rhythmâtemperature interactions is underway. Further risks are posed by chemical pollution and the depletion of oxygen levels in aquatic environments. Here, we focused our attention on fish, which are at heightened risk of being affected by human influence and are adapted to diverse environments showing predictable changes in light conditions, oxygen saturation and temperature. The examined literature to date suggests an abundance of mechanisms that can lead to interactions between responses to hypoxia, pollutants or pathogens and regulation of endogenous rhythms, but also reveals gaps in our understanding of the plasticity of endogenous rhythms in fish and in how these interactions may be disturbed by human influence and affect natural populations. Here, we summarize research on the molecular mechanisms behind environmentâclock interactions as they relate to oxygen variability, temperature and responses to pollutants, and propose ways to address these interactions more conclusively in future studies.</p
Pollution related effects on immune function and stress in a free-living population of pied flycatcher Ficedula hypoleuca
We investigated whether exposure to heavy metal pollution affected the immune function of individuals in a free living population of a small insectivorous passerine bird, the pied flycatcher Ficedula hypoleuca. We measured humoral immune responses in two study areas: a polluted area in the vicinity of a copper smelter and a control area far from the smelter. Plasma corticosterone level and blood heterophil/lymphocyte ratio (H/L) were used as more general physiological measures of stress. The immune response of F hypoleuca was not suppressed by pollution stress. In contrast, we found that F hypoleuca males showed stronger Immoral immune responses to a novel antigen (tetanus toxoid) in the polluted environment than in the unpolluted one. After the immunization of males, numbers of lymphocytes rose significantly more in the polluted area, leading to a smaller H/L ratio than in males from the control area. Females showed no pollution related effects on their immune responses. Corticosterone levels of males and nestlings were not related to pollution levels. Nestlings showed somewhat higher H/L ratios and lower fledging success in the polluted area, both factors indicating increased stress levels in a polluted area. Our results suggest that Immoral immune response of male F hypoleuca may be enhanced under moderate levels of heavy metal Pollution. Enhanced immune function may, however, also be costly for birds and the higher humoral immune responses in polluted areas may thus have negative effects on the birds' breeding performance and survival
Adaptation of the LIGNUM model for simulations of growth and light response in Jack pine
LIGNUM is a whole tree model, developed for Pinus sylvestris in Finland, that combines tree metabolism with a realistic spatial distribution of morphological parts. We hypothesize that its general concepts, which include the pipe model, functional balance, yearly carbon budget, and a set of architectural growth rules, are applicable to all trees. Adaptation of the model to Pinus banksiana, a widespread species of economic importance in North America, is demonstrated. Conversion of the model to Jack pine entailed finding new values for 16 physiological and morphological parameters, and three growth functions. Calibration of the LIGNUM Jack pine model for open grown trees up to 15 years of age was achieved by matching crown appearance and structural parameters (height, foliage biomass, aboveground biomass) with those of real trees. A sensitivity study indicated that uncertainty in the photosynthesis and respiration parameters will primarily cause changes to the net annual carbon gain, which can be corrected through calibration of the growth rate. The effect of a decrease in light level on height, biomass, total tree branch length, and productivity were simulated and compared with field data. Additional studies yielded insight into branch pruning, carbon allocation patterns, crown structure, and carbon stress. We discuss the value of the LIGNUM model as a tool for understanding tree growth and survival dynamics in natural and managed forests
Hypoxia exposure and B-type natriuretic peptide release from Langendorff heart of rats
AimWe studied whether available oxygen without induced mechanical stretch regulates the release of the biologically active B-type natriuretic peptide (BNP) from Langendorff heart.MethodsRat hearts were isolated and perfused with a physiological Krebs-Henseleit solution at a constant hydrostatic pressure in Langendorff set-up. The basal O-2 level of perfusate (24.40.04mgL(-1)) was gradually lowered to 3.00.01mgL(-1) over 20min using N-2 gas (n=7). BNP and O-2 level were measured from coronary flow. During control perfusions (n=5), the O-2 concentration was kept at 26.6 +/- 0.3mgL(-1).ResultsA low oxygen concentration in the perfusate was associated with a significant increase in BNP release (F=40.4, P<0.001). Heart rate decreased when the oxygen concentration in the perfusate reached 9.1 +/- 0.02mgL(-1) and continued to fall in lower oxygen concentrations (F=14.8, P<0.001). There was also a significant but inverse correlation between BNP and oxygen in the coronary flow (R-2=0.27, P<0.001).ConclusionIn the spontaneously beating Langendorff rat heart, a decreasing concentration of oxygen in the ingoing perfusion increased the secretion of BNP. The effect of oxygen was independent of mechanical stretch of the heart as it occurred even when the heart rate decreased but the pressure conditions remained constant. The difference in the oxygen capacitance of blood and Krebs-Henseleit solution appears to be a major factor affecting secretion of BNP, which is correlated with the oxygen tension of myocardial cells and affected both by the oxygen concentration and capacitance of solution perfusing the heart and by the coronary flow
- âŠ