2,852 research outputs found
Mathematical Structure of Relativistic Coulomb Integrals
We show that the diagonal matrix elements where
are the standard Dirac matrix operators
and the angular brackets denote the quantum-mechanical average for the
relativistic Coulomb problem, may be considered as difference analogs of the
radial wave functions. Such structure provides an independent way of obtaining
closed forms of these matrix elements by elementary methods of the theory of
difference equations without explicit evaluation of the integrals. Three-term
recurrence relations for each of these expectation values are derived as a
by-product. Transformation formulas for the corresponding generalized
hypergeometric series are discussed.Comment: 13 pages, no figure
- …