14 research outputs found

    Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy

    Get PDF
    We observed a 32-fold increase in the spontaneous emission rate of InGaN/GaN quantum well (QW) at 440 nm by employing surface plasmons (SPs) probed by time-resolved photoluminescence spectroscopy. We explore this remarkable enhancement of the emission rates and intensities resulting from the efficient energy transfer from electron-hole pair recombination in the QW to electron vibrations of SPs at the metal-coated surface of the semiconductor heterostructure. This QW-SP coupling is expected to lead to a new class of super bright and high-speed light-emitting diodes (LEDs) that offer realistic alternatives to conventional fluorescent tubes

    Surface plasmon enhanced InGaN light emitter

    Get PDF
    We report a dramatic increase in the photoluminescence (PL) emitted from InGaN/GaN quantum wells (QW), obtained by covering these sample surface with thin metallic films. Remarkable enhancements of PL peak intensities were obtained from In_(0.3)Ga_(0.7)N QWs with 50 nm thick silver and aluminum coating with 10 nm GaN spacer. These PL enhancements can be attributed to strong interaction between QWs and surface plasmons (SPs). No such enhancements were obtained from samples coated with gold, as its well-known plasmon resonance occurs only at longer wavelengths. We also showed that QW-SP coupling increase the internal quantum efficiencies by measuring the temperature dependence of PL intensities. QW-SP coupling is a very promising method for developing the super bright light emitting diodes (LEDs). Moreover, we found that the metal nano-structure is very important facto to decide the light extraction. A possible mechanism of QW-SP coupling and emission enhancement has been developed, and high-speed and efficient light emission is predicted for optically as well as electrically pumped light emitters

    Surface plasmon enhanced light emitting efficiencies of InGaN/GaN quantum wells

    Get PDF
    We report a dramatic increase in the light emitting efficiency of InGaN/GaN resulting from surface plasmon interaction between the quantum wells and evaporated silver layers, whereas no such enhancement was obtained from gold deposited samples

    Surface plasmon enhanced InGaN light emitter

    Get PDF
    We report a dramatic increase in the photoluminescence (PL) emitted from InGaN/GaN quantum wells (QW), obtained by covering these sample surface with thin metallic films. Remarkable enhancements of PL peak intensities were obtained from In_(0.3)Ga_(0.7)N QWs with 50 nm thick silver and aluminum coating with 10 nm GaN spacer. These PL enhancements can be attributed to strong interaction between QWs and surface plasmons (SPs). No such enhancements were obtained from samples coated with gold, as its well-known plasmon resonance occurs only at longer wavelengths. We also showed that QW-SP coupling increase the internal quantum efficiencies by measuring the temperature dependence of PL intensities. QW-SP coupling is a very promising method for developing the super bright light emitting diodes (LEDs). Moreover, we found that the metal nano-structure is very important facto to decide the light extraction. A possible mechanism of QW-SP coupling and emission enhancement has been developed, and high-speed and efficient light emission is predicted for optically as well as electrically pumped light emitters

    A Statistical Study of Inertia-Gravity Waves in the Middle Atmosphere

    No full text

    Inertia-Gravity Waves in the Troposphere and Stratosphere Observed by the MU Radar

    No full text

    Surface-plasmon-enhanced light emitters based on InGaN quantum wells

    No full text
    Since 1993, InGaN light-emitting diodes (LEDs) have been improved and commercialized, but these devices have not fulfilled their original promise as solid-state replacements for light bulbs as their light-emission efficiencies have been limited. Here we describe a method to enhance this efficiency through the energy transfer between quantum wells (QWs) and surface plasmons (SPs). SPs can increase the density of states and the spontaneous emission rate in the semiconductor, and lead to the enhancement of light emission by SPā€“QW coupling. Large enhancements of the internal quantum efficiencies (etaint) were measured when silver or aluminium layers were deposited 10 nm above an InGaN light-emitting layer, whereas no such enhancements were obtained from gold-coated samples. Our results indicate that the use of SPs would lead to a new class of very bright LEDs, and highly efficient solid-state light sources
    corecore