5 research outputs found
Visual Cryptography-Based Secure QR Payment System Design and Implementation
It is important to validate the Merchant and the Client to increase confidence in online transactions. At present, only the Client is checked against the merchant server. The research in this paper will show you how to create and launch a QR code-based payment system that is both secure and convenient for users. As a result of their capacity to facilitate instantaneous transactions and offer unparalleled ease of use, QR codes have seen explosive growth in the past few years. QR-based online payment systems are easy to use but susceptible to various assaults. So, for the level of security given by transaction processing to hold, the secrecy and integrity of each payment procedure must be guaranteed. In addition, the online payment system must verify each transaction from both the sender's and the recipient's perspectives. The study's QR-based method is kept safe through visual cryptography. The suggested approach takes advantage of visual cryptography via a web-based application
Recommended from our members
New tools for self-organized pattern formation
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Recommended from our members
The Two-Component Sensor KinB Regulates Pseudomonas aeruginosa Virulence
Bacteria commonly use two-component sensors to sense and respond to their environment. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa has one of the largest sets of two-component sensors known in bacteria, which likely contributes to its ability to adapt to diverse environments, including the human host. Several of these sensors such as GacS have been shown to play a role in the regulation of virulence in this pathogen. However, the role of the majority of sensors remains unknown. In this thesis I show that the two-component sensor KinB is required for full P. aeruginosa virulence in the recently characterized model host Danio rerio. I found that KinB regulates several virulence-associated phenotypes in P. aeruginosa including pyocyanin and elastase production and motility. I show that KinB regulates these phenotypes through the global sigma factor AlgU, which plays a critical role in the repression of P. aeruginosa acute virulence factors and through its cognate response regulator, AlgB, albeit in a non-canonical manner. KinB’s primary role in the regulation of acute virulence is to act as a phosphatase to dephosphorylate AlgB
The eradication of bacterial persisters with antibiotic-generated hydroxyl radical
During Mycobacterium tuberculosis infection, a population of bacteria likely becomes refractory to antibiotic killing in the absence of genotypic resistance, making treatment challenging. We describe an in vitro model capable of yielding a phenotypically antibiotic-tolerant subpopulation of cells, often called persisters, within populations of Mycobacterium smegmatis and M. tuberculosis. We find that persisters are distinct from the larger antibiotic-susceptible population, as a small drop in dissolved oxygen (DO) saturation (20%) allows for their survival in the face of bactericidal antibiotics. In contrast, if high levels of DO are maintained, all cells succumb, sterilizing the culture. With increasing evidence that bactericidal antibiotics induce cell death through the production of reactive oxygen species (ROS), we hypothesized that the drop in DO decreases the concentration of ROS, thereby facilitating persister survival, and maintenance of high DO yields sufficient ROS to kill persisters. Consistent with this hypothesis, the hydroxyl-radical scavenger thiourea, when added to M. smegmatis cultures maintained at high DO levels, rescues the persister population. Conversely, the antibiotic clofazimine, which increases ROS via an NADH-dependent redox cycling pathway, successfully eradicates the persister population. Recent work suggests that environmentally induced antibiotic tolerance of bulk populations may result from enhanced antioxidant capabilities. We now show that the small persister subpopulation within a larger antibiotic-susceptible population also shows differential susceptibility to antibiotic-induced hydroxyl radicals. Furthermore, we show that stimulating ROS production can eradicate persisters, thus providing a potential strategy to managing persistent infections.National Human Genome Research Institute (U.S.) (Grant T32 HG002295