22 research outputs found
Analysis of the application of the optical method to the measurements of the water vapor content in the atmosphere - Part 1: Basic concepts of the measurement technique
We retrieved the total content of the atmospheric water vapor (or Integrated
Water Vapor, IWV) from extensive sets of photometric data obtained since 1995
at Lindenberg Meteorological Observatory with star and sun photometers.
Different methods of determination of the empirical parameters that are
necessary for the retrieval are discussed. The instruments were independently
calibrated using laboratory measurements made at Pulkovo Observatory with the
VKM-100 multi-pass vacuum cell. The empirical parameters were also calculated
by the simulation of the atmospheric absorption by water vapor, using the
MODRAN-4 program package for different model atmospheres. The results are
compared to those presented in the literature, obtained with different
instruments and methods of the retrieval. The reliability of the empirical
parameters, used for the power approximation that links the water vapor content
with the observed absorption, is analyzed. Currently, the total (from
measurements, calibration, and calculations) errors yield the standard
uncertainty of about 10% in the total column water vapor. We discuss the
possibilities for improving the accuracy of calibration to ~1% as indispensable
condition in order to make it possible to use data obtained by optical
photometry as an independent reference for other methods (GPS, MW-radiometers,
lidar, etc).Comment: 28 pages, 8 figures, 3 tables. In submitting to Atmospheric
Measurement Technique
Rare coding variants in genes encoding GABA_A receptors in genetic generalised epilepsies: an exome-based case-control study
BACKGROUND: Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy. METHODS: For this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABAA receptors and was compared to the respective GABAA receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes. FINDINGS: Statistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABAA receptors in cases (odds ratio [OR] 2·40 [95% CI 1·41-4·10]; pNonsyn=0·0014, adjusted pNonsyn=0·019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1·46 [95% CI 1·05-2·03]; pNonsyn=0·0081, adjusted pNonsyn=0·016). Comparison of genes encoding GABAA receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare missense variants for 15 GABAA receptor genes in cases compared with controls (OR 1·46 [95% CI 1·02-2·08]; pNonsyn=0·013, adjusted pNonsyn=0·027). Functional studies for two selected genes (GABRB2 and GABRA5) showed significant loss-of-function effects with reduced current amplitudes in four of seven tested variants compared with wild-type receptors. INTERPRETATION: Functionally relevant variants in genes encoding GABAA receptor subunits constitute a significant risk factor for genetic generalised epilepsy. Examination of the role of specific gene groups and pathways can disentangle the complex genetic architecture of genetic generalised epilepsy. FUNDING: EuroEPINOMICS (European Science Foundation through national funding organisations), Epicure and EpiPGX (Sixth Framework Programme and Seventh Framework Programme of the European Commission), Research Unit FOR2715 (German Research Foundation and Luxembourg National Research Fund)
Rare coding variants in genes encoding GABA(A) receptors in genetic generalised epilepsies : an exome-based case-control study
Background Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy. Methods For this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABA(A) receptors and was compared to the respective GABA(A) receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes. Findings Statistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABA(A) receptors in cases (odds ratio [OR] 2.40 [95% CI 1.41-4.10]; p(Nonsyn)=0.0014, adjusted p(Nonsyn)=0.019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1.46 [95% CI 1.05-2.03]; p(Nonsyn)=0.0081, adjusted p(Nonsyn)=0.016). Comparison of genes encoding GABA(A) receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare missense variants for 15 GABA(A) receptor genes in cases compared with controls (OR 1.46 [95% CI 1.02-2.08]; p(Nonsyn)=0.013, adjusted p(Nonsyn)=0.027). Functional studies for two selected genes (GABRB2 and GABRA5) showed significant loss-of-function effects with reduced current amplitudes in four of seven tested variants compared with wild-type receptors. Interpretation Functionally relevant variants in genes encoding GABA(A) receptor subunits constitute a significant risk factor for genetic generalised epilepsy. Examination of the role of specific gene groups and pathways can disentangle the complex genetic architecture of genetic generalised epilepsy. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe
Association of ultra-rare coding variants with genetic generalized epilepsy: A case\u2013control whole exome sequencing study
Objective: We aimed to identify genes associated with genetic generalized epilepsy (GGE) by combining large cohorts enriched with individuals with a positive family history. Secondarily, we set out to compare the association of genes independently with familial and sporadic GGE. Methods: We performed a case\u2013control whole exome sequencing study in unrelated individuals of European descent diagnosed with GGE (previously recruited and sequenced through multiple international collaborations) and ancestry-matched controls. The association of ultra-rare variants (URVs; in 18 834 protein-coding genes) with epilepsy was examined in 1928 individuals with GGE (vs. 8578 controls), then separately in 945 individuals with familial GGE (vs. 8626 controls), and finally in 1005 individuals with sporadic GGE (vs. 8621 controls). We additionally examined the association of URVs with familial and sporadic GGE in two gene sets important for inhibitory signaling (19 genes encoding \u3b3-aminobutyric acid type A [GABAA] receptors, 113 genes representing the GABAergic pathway). Results: GABRG2 was associated with GGE (p = 1.8
7 10 125), approaching study-wide significance in familial GGE (p = 3.0
7 10 126), whereas no gene approached a significant association with sporadic GGE. Deleterious URVs in the most intolerant subgenic regions in genes encoding GABAA receptors were associated with familial GGE (odds ratio [OR] = 3.9, 95% confidence interval [CI] = 1.9\u20137.8, false discovery rate [FDR]-adjusted p =.0024), whereas their association with sporadic GGE had marginally lower odds (OR = 3.1, 95% CI = 1.3\u20136.7, FDR-adjusted p =.022). URVs in GABAergic pathway genes were associated with familial GGE (OR = 1.8, 95% CI = 1.3\u20132.5, FDR-adjusted p =.0024) but not with sporadic GGE (OR = 1.3, 95% CI =.9\u20131.9, FDR-adjusted p =.19). Significance: URVs in GABRG2 are likely an important risk factor for familial GGE. The association of gene sets of GABAergic signaling with familial GGE is more prominent than with sporadic GGE
ARCTIC TOURISM: STATE AND PROSPECTS FOR RUSSIA
Tourism is the key factor of human presence in the Arctic region. The number of tourist visits has been growing extensively since the end of XX century. The Arctic region is not regarded only as prospective region for oil and gas industry but now it is also recognized as the region with high potential for tourism development. The research is dedicated to the assessment of the spatial distribution of human presence within the Arctic region on the basis of statistical analysis of population and tourist visits in different parts of the Arctic. Taking into account the uncertainty of regional Arctic borders definition, which are commonly determined in accordance with given purposes and tasks, we assessed the population and tourist visits for the Arctic Zone of the Russian Federation as administrative union as well as for the Arctic region as physic-geographical region.The growing number of tourists in the Arctic region influences future development prospects of the region. In 2017 the Arctic region with population of 4.3 million people was visited by 10.2 million tourist. While the favorable environmental conditions of Arctic ecosystems exist, the Arctic region should be considered as the source of nature resources for tourism and various recreational activities. Modern technologies enable the development of travel industry in the region, and therefore the industrial paradigm of “conquer” and “utilization” should be replaced with the axiological paradigm of “Arctic beauty” and recreational resource value
Clin Genet
Mowat–Wilson syndrome (MWS) is an autosomal dominant developmental disorder with mental retardation and variable multiple congenital abnormalities due to mutations of the ZEB2 (ZFHX1B) gene at 2q22. MWS was first described in 1998 and the causative gene was delineated in 2001. Since then, 115 different mutations of ZEB2 have been published in association with this syndrome in 161 individuals. However, recent reports suggest that due to the variability of the congenital abnormalities, this syndrome may still be underdiagnosed. We report two unrelated patients with MWS where the clinical diagnosis was established only after finding of disruption of the ZEB2 gene by a balanced translocation breakpoint and an interstitial microdeletion, respectively