15 research outputs found

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Lipopolysaccharide induces mouse translocator protein (18 kDa) expression via the AP-1 complex in the microglial cell line, BV-2.

    No full text
    It has been reported that neuroinflammation occurs in the central nervous system (CNS) in patients with neuropathic pain, Alzheimer's disease and autism spectrum disorder. The 18-kDa translocator protein TSPO is used as an imaging target in positron emission tomography to detect neuroinflammation, and its expression is correlated with microglial activation. However, the mechanism underlying the transcriptional regulation of Tspo induced by inflammation is not clear. Here, we revealed that lipopolysaccharide (LPS) -induced Tspo expression was activated by the AP-1 complex in a mouse microglial cell line, BV-2. Knockdown of c-Fos and c-Jun, the components of AP-1, reduced LPS-induced Tspo expression. Furthermore, the enrichment of Sp1 in the proximal promoter region of Tspo was increased in the presence of LPS. In addition, the binding of histone deacetylase 1 (HDAC1) to the enhancer region, which contains the AP-1 site, was decreased by LPS treatment, but there were no significant differences in HDAC1 binding to the proximal promoter region with or without LPS. These results indicated that HDAC1 is involved not in the proximal promoter region but in the enhancer region. Our study revealed that inflammatory signals induce the recruitment of AP-1 to the enhancer region and Sp1 to the proximal promoter region of the Tspo gene and that Sp1 may regulate the basal expression of Tspo

    Assessment of the Diagnostic Value and Image Quality of Dual-source Computed Tomography in Lumbar Vertebral Fractures: Comparison with Magnetic Resonance Imaging

    Get PDF
    The aim of this study was to assess the performance of virtual non-calcium images from dual-energy computed tomography (DECT), using dual-source CT (DSCT). Forty-one patients suspected of having traumatic vertebral fractures who underwent DSCT with virtual non-calcium imaging were included in this study. For comparison, radiation exposure was measured in 11 patients receiving DSCT with a radiation exposure reduction system, and in 14 patients receiving conventional multi-detector-row CT scans. Radiation exposure, detectability of fractures and visual image quality were assessed and compared between the groups. Radiation exposure was less with the non-calcium image than with the other methods. The CT number (x-ray absorption coefficient of a pixel in a CT) for the affected vertebrae was significantly higher than for normal vertebrae. When the threshold of the CT number was determined as -25.6 HU, the sensitivity was 100% and specificity was 92.6%. In most cases, the quality of the virtual non-calcium image was inferior to the fat-suppressed T2-weighted magnetic resonance images. The virtual non-calcium image technique obtained using DSCT can be a useful part of the clinical diagnosis of vertebral fractures

    Sulforaphane Increase Mitochondrial Biogenesis-Related Gene Expression in the Hippocampus and Suppresses Age-Related Cognitive Decline in Mice

    No full text
    Sulforaphane (SFN) is a potent activator of the transcriptional factor, Nuclear Factor Erythroid 2 (NF-E2)-Related factor 2 (NRF2). SFN and its precursor, glucoraphanin (sulforaphane glucosinolate, SGS), have been shown to ameliorate cognitive function in clinical trials and in vivo studies. However, the effects of SGS on age-related cognitive decline in Senescence-Accelerated Mouse Prone 8 (SAMP8) is unknown. In this study, we determined the preventive potential of SGS on age-related cognitive decline. One-month old SAMP8 mice or control SAM resistance 1 (SAMR1) mice were fed an ad libitum diet with or without SGS-containing broccoli sprout powder (0.3% w/w SGS in diet) until 13 months of age. SGS significantly improved long-term memory in SAMP8 at 12 months of age. Interestingly, SGS increased hippocampal mRNA and protein levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) and mitochondrial transcription factor A (TFAM), which are master regulators of mitochondrial biogenesis, both in SAMR1 and SAMP8 at 13 months of age. Furthermore, mRNAs for nuclear respiratory factor-1 (NRF-1) and mitochondrial DNA-encoded respiratory complex enzymes, but not mitochondrial DNA itself, were increased by SGS in SAMP8 mice. These results suggest that SGS prevents age-related cognitive decline by maintaining mitochondrial function in senescence-accelerated mice
    corecore