32 research outputs found

    急性肺炎患者におけるバイオマーカーとしての血清syndecan-4の可能性

    Get PDF
    博士(医学)福島県立医科大

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Baseline serum syndecan-4 predicts prognosis after the onset of acute exacerbation of idiopathic interstitial pneumonia.

    No full text
    Patients with idiopathic interstitial pneumonia can experience acute respiratory worsening, also known as acute exacerbation, with a large deterioration on prognosis. The precise mechanism remains unclear; however, syndecan-4 may be involved. Syndecan-4, a transmembrane heparan sulfate proteoglycan expressed in a variety of cells (e.g., epithelial cells, macrophages, fibroblasts, etc.), performs various biological roles by binding to several proteins through its heparan sulfate glycosaminoglycan side chains. The goal of this study was to clarify the role of syndecan-4 in acute exacerbation of idiopathic interstitial pneumonia.Patients with idiopathic interstitial pneumonia who had been sequentially admitted to our hospital due to acute exacerbation were retrospectively analyzed. First, serum syndecan-4 levels in the acute exacerbation and clinically stable phases were compared. Second, the relationship between serum syndecan-4 levels and clinical parameters was analyzed. Third, the relationship between serum syndecan-4 levels and prognosis was evaluated.Serum syndecan-4 levels were significantly lower in patients with acute exacerbation of idiopathic interstitial pneumonia than in patients in the clinically stable phase. Serum syndecan-4 levels also showed a significant positive correlation with white blood cell count and a weak positive tendency with KL-6 and baseline %VC. Prognosis was significantly worse in patients with idiopathic interstitial pneumonia with high baseline serum syndecan-4 levels than with low baseline levels. Multiple logistic analysis indicated baseline serum syndecan-4 level as the only prognostic predictor following acute exacerbation.Baseline serum syndecan-4 is a possible prognostic biomarker after the onset of acute exacerbation of idiopathic interstitial pneumonia

    Two cases of idiopathic pulmonary fibrosis evaluated by dynamic digital radiography for diaphragmatic motion and disease progression

    No full text
    Abstract Forced vital capacity has been utilized as a parameter of disease progression in idiopathic pulmonary fibrosis (IPF); however, its measurement is difficult when patients do not understand or cooperate. Dynamic digital radiography (DDR) enables sequential chest X‐ray imaging during breathing, with lower radiation doses compared to conventional fluoroscopy or computed tomography. There is accumulating evidence showing that parameters obtained from DDR, particularly those related to diaphragmatic dynamics, are correlated with pulmonary function parameters, and are useful for pathophysiological evaluation. We herein present two cases that suggest parameters obtained from DDR during supine normal tidal breathing may predict disease progression of IPF

    A Serological Biomarker of Versican Degradation is Associated with Mortality Following Acute Exacerbations of Idiopathic Interstitial Pneumonia

    No full text
    Abstract Background Idiopathic interstitial pneumonia (IIP) is characterized by an increased rate of extracellular matrix (ECM) remodeling resulting in fibrosis. Acute exacerbations of IIP represent periods of increased disease activity, thus we hypothesized that ECM remodeling was altered during acute exacerbations and investigated this by serological neo-epitope biomarkers. Methods Patients who were sequentially admitted to the hospital with acute exacerbations of IIP were retrospectively analyzed for ECM remodeling at time of exacerbation (AE-IIP) and at clinical stability (S-IIP). Biomarkers released by matrix metalloproteinase-mediated degradation of collagen type I (C1M), III (C3M), IV (C4M), and VI (C6M), elastin (ELM7), versican (VCANM), biglycan (BGM), and C-reactive protein (CRPM) were assessed in serum by competitive ELISAs utilizing neo-epitope specific monoclonal antibodies. Results Sixty-eight patients at AE-IIP and 29 at S-IIP were included in this retrospective analysis. Of these, 28 and 11 patients, respectively, had idiopathic pulmonary fibrosis. At AE-IIP, serum levels of C4M (p = 0.002) and C6M (p = 0.024) were increased as compared with S-IIP, while ELM7 (p = 0.024) and VCANM (p < 0.0001) were decreased. Lower VCANM levels at AE-IIP were associated with increased risk of mortality (HR 0.64 [95% CI 0.43–0.94], p = 0.022). Conclusions The ECM remodeling profile was significantly altered during acute exacerbations of IIP, and a biomarker of versican degradation was related to mortality outcome. These results indicate that biomarkers of ECM remodeling may be useful in the non-invasive evaluation of acute exacerbations of IIP. Especially versican degradation, as measured serologically by VCANM, may have prognostic potential and help guide treatment for acute exacerbations
    corecore