180 research outputs found

    Introduction

    Get PDF

    Conclusions

    Get PDF

    Holmium Nanoparticles: Preparation and In Vitro Characterization of a New Device for Radioablation of Solid Malignancies

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Purpose The present study introduces the preparation and in vitro characterization of a nanoparticle device comprising holmium acetylacetonate for radioablation of unresectable solid malignancies. Methods HoAcAc nanoparticles were prepared by dissolving holmium acetylacetonate in chloroform, followed by emulsification in an aqueous solution of a surfactant and evaporation of W. Bult: R. Varkevisser: P. R. Luijten: A. D. van het Schip

    Quantitative Evaluation of Scintillation Camera Imaging Characteristics of Isotopes Used in Liver Radioembolization

    Get PDF
    Scintillation camera imaging is used for treatment planning and post-treatment dosimetry in liver radioembolization (RE). In yttrium-90 (90Y) RE, scintigraphic images of technetium-99m (99mTc) are used for treatment planning, while 90Y Bremsstrahlung images are used for post-treatment dosimetry. In holmium-166 (166Ho) RE, scintigraphic images of 166Ho can be used for both treatment planning and post-treatment dosimetry. The aim of this study is to quantitatively evaluate and compare the imaging characteristics of these three isotopes, in order that imaging protocols can be optimized and RE studies with varying isotopes can be compared.Phantom experiments were performed in line with NEMA guidelines to assess the spatial resolution, sensitivity, count rate linearity, and contrast recovery of 99mTc, 90Y and 166Ho. In addition, Monte Carlo simulations were performed to obtain detailed information about the history of detected photons. The results showed that the use of a broad energy window and the high-energy collimator gave optimal combination of sensitivity, spatial resolution, and primary photon fraction for 90Y Bremsstrahlung imaging, although differences with the medium-energy collimator were small. For 166Ho, the high-energy collimator also slightly outperformed the medium-energy collimator. In comparison with 99mTc, the image quality of both 90Y and 166Ho is degraded by a lower spatial resolution, a lower sensitivity, and larger scatter and collimator penetration fractions.The quantitative evaluation of the scintillation camera characteristics presented in this study helps to optimize acquisition parameters and supports future analysis of clinical comparisons between RE studies

    Time-Frequency Analysis of Accelerometry Data for Detection of Myoclonic Seizures

    Full text link

    Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intra-arterial radioembolization with yttrium-90 microspheres ( <sup>90</sup>Y-RE) is an increasingly used therapy for patients with unresectable liver malignancies. Over the last decade, radioactive holmium-166 poly(L-lactic acid) microspheres ( <sup>166</sup>Ho-PLLA-MS) have been developed as a possible alternative to <sup>90</sup>Y-RE. Next to high-energy beta-radiation, <sup>166</sup>Ho also emits gamma-radiation, which allows for imaging by gamma scintigraphy. In addition, Ho is a highly paramagnetic element and can therefore be visualized by MRI. These imaging modalities are useful for assessment of the biodistribution, and allow dosimetry through quantitative analysis of the scintigraphic and MR images. Previous studies have demonstrated the safety of <sup>166</sup>Ho-PLLA-MS radioembolization ( <sup>166</sup>Ho-RE) in animals. The aim of this phase I trial is to assess the safety and toxicity profile of <sup>166</sup>Ho-RE in patients with liver metastases.</p> <p>Methods</p> <p>The HEPAR study (Holmium Embolization Particles for Arterial Radiotherapy) is a non-randomized, open label, safety study. We aim to include 15 to 24 patients with liver metastases of any origin, who have chemotherapy-refractory disease and who are not amenable to surgical resection. Prior to treatment, in addition to the standard technetium-99m labelled macroaggregated albumin ( <sup>99m</sup>Tc-MAA) dose, a low radioactive safety dose of 60-mg <sup>166</sup>Ho-PLLA-MS will be administered. Patients are treated in 4 cohorts of 3-6 patients, according to a standard dose escalation protocol (20 Gy, 40 Gy, 60 Gy, and 80 Gy, respectively). The primary objective will be to establish the maximum tolerated radiation dose of <sup>166</sup>Ho-PLLA-MS. Secondary objectives are to assess tumour response, biodistribution, performance status, quality of life, and to compare the <sup>166</sup>Ho-PLLA-MS safety dose and the <sup>99m</sup>Tc-MAA dose distributions with respect to the ability to accurately predict microsphere distribution.</p> <p>Discussion</p> <p>This will be the first clinical study on <sup>166</sup>Ho-RE. Based on preclinical studies, it is expected that <sup>166</sup>Ho-RE has a safety and toxicity profile comparable to that of <sup>90</sup>Y-RE. The biochemical and radionuclide characteristics of <sup>166</sup>Ho-PLLA-MS that enable accurate dosimetry calculations and biodistribution assessment may however improve the overall safety of the procedure.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT01031784</p

    Why do people use portable air purifiers? Evidence from occupant surveys and air quality monitoring in homes in three European cities

    Get PDF
    One of the most widely available technologies to clean the air in homes of particulate matter of less than 2.5 µm in diameter (PM2.5), known to have negative health impacts, are portable home air purifiers (HAPs). This paper presents research which (1) explored the effectiveness of HAPs in real-world conditions in 57 homes in three European cities; (2) examined if HAPs affect users’ perceptions of the indoor air quality (IAQ) at home; and (3) considered the motivations for occupants’ operation of HAPs. Results from this study found that PM2.5 concentrations in bedrooms were reduced by 45% to 69%; perceptions of IAQ were not correlated with measured high PM2.5 levels; occupants reported the HAPs to have a ‘cooling’ effect, which may explain why the predominant driver of HAP use was thermal comfort, rather than IAQ, in all three cities. The latter finding was supported by a statistically significant increase in the probability of HAP use with increasing indoor temperatures. If the operation of HAPs can be managed, or fully automated, to reflect indoor air pollution levels rather than thermal conditions, better pollutant reduction would be feasible and their use to reduce PM2.5 may help mitigate the negative health effects of exposure whilst at home
    corecore