34 research outputs found
A centrality measure for cycles and subgraphs II
In a recent work we introduced a measure of importance for groups of vertices in a complex network. This centrality for groups is always between 0 and 1 and induces the eigenvector centrality over vertices. Furthermore, its value over any group is the fraction of all network flows intercepted by this group. Here we provide the rigorous mathematical constructions underpinning these results via a semi-commutative extension of a number theoretic sieve. We then established further relations between the eigenvector centrality and the centrality proposed here, showing that the latter is a proper extension of the former to groups of nodes. We finish by comparing the centrality proposed here with the notion of group-centrality introduced by Everett and Borgatti on two real-world networks: the Wolfe’s dataset and the protein-protein interaction network of the yeast Saccharomyces cerevisiae. In this latter case, we demonstrate that the centrality is able to distinguish protein complexe
Genetic characterization of Erve virus, a European Nairovirus distantly related to Crimean-Congo hemorrhagic fever virus
Erve virus (ERVEV) is a European Nairovirus that is suspected to cause severe headache (thunderclap headache) and intracerebral hemorrhage. The mode of transmission to humans (ticks or mosquitoes) is still unknown. Currently, no standardized testing method for ERVEV exists and only a small partial sequence of the polymerase gene is available. Here, we present the first complete genome sequence of ERVEV S, M, and L segments. Phylogenetic comparison of the amino acid sequence of the L-protein (RNA-dependent RNA polymerase) revealed only 48 % homology to available L-protein sequences of other Nairoviruses like Crimean-Congo hemorrhagic fever virus, Nairobi sheep disease virus, Hazara virus, Kupe virus, and Dugbe virus. Among themselves, these Nairoviruses show 62-89 % homology in the L-protein sequences. Therefore, ERVEV seems to be only distantly related to other Nairoviruses. The new sequence data can be used for the development of diagnostic methods and the identification of the natural vector
OTUB1 Overexpression in Mesangial Cells Is a Novel Regulator in the Pathogenesis of Glomerulonephritis through the Decrease of DCN Level
BACKGROUND: OTUB1 is a member of OTUs (Ovarian-tumor-domain-containing proteases), a deubiquitinating enzymes family (DUBs), which was shown as a proteasome-associated DUB to be involved in the proteins Ub-dependent degradation. It has been reported that OTUB1 was expressed in kidney tissue. But its concrete cellular location and function in the kidney remain unclear. Decorin (DCN) in mesangial cells (MC) is considered to be a potentially important factor for antagonizing glomerulonephritides, and its degradation is mediated by ubiquitination. The aim of this study is to investigate the role of OTUB1 expression in MC and its relationship with DCN during glomerulonephritis. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative RT-PCR and Western blot, we demonstrated that OTUB1 mRNA and protein were constitutively expressed in cultured rat MC and found to be upregulated by the stimulation of IL-1β or ATS. OTUB1 overexpression was detected in the mesangial area of glomeruli in some immunocomplex mediated nephritides such as IgA nephropathy, acute diffuse proliferative glomerulonephritis and lupus nephritis by immunohistochemistry. The immunoprecipitation assay demonstrated that OTUB1 interacted with DCN. The overexpression of OTUB1 enhanced the ubiquitination and degradation of DCN in MC. CONCLUSION/SIGNIFICANCE: These data showed the inflammatory injury could up-regulate OTUB1 expression in MC, which might attribute the promoting effect of OTUB1 on glomerulonephritides to the decrease of DCN level
MEK inhibitors block growth of lung tumors with mutations in Ataxia Telangiectasia Mutated
Lung cancer is the leading cause of cancer deaths, and effective treatments are urgently needed. Loss-of-function mutations in the DNA damage response kinase ATM are common in lung adenocarcinoma but directly targeting these with drugs remains challenging. Here we report that ATM loss-of-function is synthetic lethal with drugs inhibiting the central growth factor kinases MEK1/2, including the FDA-approved drug trametinib. Lung cancer cells resistant to MEK inhibition become highly sensitive upon loss of ATM both in vitro and in vivo. Mechanistically, ATM mediates crosstalk between the prosurvival MEK/ERK and AKT/mTOR pathways. ATM loss also enhances the sensitivity of KRAS- or BRAF-mutant lung cancer cells to MEK inhibition. Thus, ATM mutational status in lung cancer is a mechanistic biomarker for MEK inhibitor response, which may improve patient stratification and extend the applicability of these drugs beyond RAS and BRAF mutant tumors
MEK inhibitors block growth of lung tumors with mutations in Ataxia Telangiectasia Mutated
Lung cancer is the leading cause of cancer deaths, and effective treatments are urgently needed. Loss-of-function mutations in the DNA damage response kinase ATM are common in lung adenocarcinoma but directly targeting these with drugs remains challenging. Here we report that ATM loss-of-function is synthetic lethal with drugs inhibiting the central growth factor kinases MEK1/2, including the FDA-approved drug trametinib. Lung cancer cells resistant to MEK inhibition become highly sensitive upon loss of ATM both in vitro and in vivo. Mechanistically, ATM mediates crosstalk between the prosurvival MEK/ERK and AKT/mTOR pathways. ATM loss also enhances the sensitivity of KRAS- or BRAF-mutant lung cancer cells to MEK inhibition. Thus, ATM mutational status in lung cancer is a mechanistic biomarker for MEK inhibitor response, which may improve patient stratification and extend the applicability of these drugs beyond RAS and BRAF mutant tumors
Discovery of a highly selective cell-active inhibitor of the histone lysine demethylases KDM2/7
Histone lysine demethylases (KDMs) are of critical importance in the epigenetic regulation of gene expression, yet there are few selective, cell-permeable inhibitors or suitable tool compounds for these enzymes. We describe the discovery of a new class of inhibitor that is highly potent towards the histone lysine demethylases KDM2A/7A.Amodular synthetic approach was used to explore the chemical space and accelerate the investigation of key structure–activity relationships, leading to the development of a small molecule with around 75- fold selectivity towards KDM2A/7A versus other KDMs, as well as cellular activity at low micromolar concentrations
Discovery of a highly selective cell-active inhibitor of the histone lysine demethylases KDM2/7
Histone lysine demethylases (KDMs) are of critical importance in the epigenetic regulation of gene expression, yet there are few selective, cell-permeable inhibitors or suitable tool compounds for these enzymes. We describe the discovery of a new class of inhibitor that is highly potent towards the histone lysine demethylases KDM2A/7A.Amodular synthetic approach was used to explore the chemical space and accelerate the investigation of key structure–activity relationships, leading to the development of a small molecule with around 75- fold selectivity towards KDM2A/7A versus other KDMs, as well as cellular activity at low micromolar concentrations