16 research outputs found

    Short-Chain Fatty Acids in the Metabolism of Heart Failure - Rethinking the Fat Stigma

    Get PDF
    Heart failure (HF) remains a disease with immense global health burden. During the development of HF, the myocardium and therefore cardiac metabolism undergoes specific changes, with decreased long-chain fatty acid oxidation and increased anaerobic glycolysis, diminishing the overall energy yield. Based on the dogma that the failing heart is oxygen-deprived and on the fact that carbohydrates are more oxygen-efficient than FA, metabolic HF drugs have so far aimed to stimulate glucose oxidation or inhibit FA oxidation. Unfortunately, these treatments have failed to provide meaningful clinical benefits. We believe it is time to rethink the concept that fat is harmful to the failing heart. In this review we discuss accumulating evidence that short-chain fatty acids (SCFAs) may be an effective fuel for the failing heart. In contrast to long-chain fatty acids, SCFAs are readily taken up and oxidized by the heart and could serve as a nutraceutical treatment strategy. In addition, we discuss how SCFAs activate pathways that increase long chain fatty acid oxidation, which could help increase the overall energy availability. Another potential beneficial effect we discuss lies within the anti-inflammatory effect of SCFAs, which has shown to inhibit cardiac fibrosis - a key pathological process in the development of HF

    Exercising heart failure patients:cardiac protection through preservation of mitochondrial function and substrate utilization?

    Get PDF
    Current heart failure (HF) therapy remains unable to substantially improve exercise capacity. Studies have shown that exercise training has beneficial effects on the heart in both health and disease. How mitochondria respond to exercise in this setting has, however, received less attention in literature. These beneficial effects may include protective changes in mitochondrial function and adaptations in substrate utilization. This review describes exercise-induced changes in cardiac metabolism, including changes in mitochondrial function and substrate utilization and their effects on cardiac function. We conclude that exercising HF patients can improve mitochondrial function and optimize substrate utilization, eventually improving or restoring cardiac function. This suggests that exercise itself should be incorporated in the HF treatment plan, to improve cardiac function and in term exercise capacity. Extending knowledge on mechanisms by which exercise exerts protective effects could potentially lead to development of therapies directed at improving mitochondrial function and substrate utilization in HF.</p

    Exercise:a molecular tool to boost muscle growth and mitochondrial performance in heart failure?

    Get PDF
    Impaired exercise capacity is the key symptom of heart failure (HF) and is associated with reduced quality of life and higher mortality rates. Unfortunately, current therapies, although generally lifesaving, have only small or marginal effects on exercise capacity. Specific strategies to alleviate exercise intolerance may improve quality of life, while possibly improving prognosis as well. There is overwhelming evidence that physical exercise improves performance in cardiac and skeletal muscles in health and disease. Unravelling the mechanistic underpinnings of exercise-induced improvements in muscle function could provide targets that will allow us to boost exercise performance in HF. With the current review we discuss: (i) recently discovered signalling pathways that govern physiological muscle growth as well as mitochondrial quality control mechanisms that underlie metabolic adaptations to exercise; (ii) the mechanistic underpinnings of exercise intolerance in HF and the benefits of exercise in HF patients on molecular, functional and prognostic levels; and (iii) potential molecular therapeutics to improve exercise performance in HF. We propose that novel molecular therapies to boost adaptive muscle growth and mitochondrial quality control in HF should always be combined with some form of exercise training.</p

    Understanding changes in echocardiographic parameters at different ages following fetal growth restriction:a systematic review and meta-analysis

    Get PDF
    Fetal growth restriction (FGR) increases cardiovascular risk by cardiac remodeling and programming. This systematic review and meta-analysis across species examines the use of echocardiography in FGR offspring at different ages. PubMed and Embase.com were searched for animal and human studies reporting on echocardiographic parameters in placental insufficiency- induced FGR offspring. We included six animal and 49 human studies. Although unable to perform a meta-analysis of animal studies because of insufficient number of studies per individual outcome, all studies showed left ventricular dysfunction. Our meta-analyses of human studies revealed a reduced left ventricular mass, interventricular septum thickness, mitral annular peak velocity, and mitral lateral early diastolic velocity at neonatal age. No echocardiographic differences during childhood were observed, although the small age range and number of studies limited these analyses. Only two studies at adult age were performed. Meta-regression on other influential factors was not possible due to underreporting. The few studies on myocardial strain analysis showed small changes in global longitudinal strain in FGR offspring. The quality of the human studies was considered low and the risk of bias in animal studies was mostly unclear. Echocardiography may offer a noninvasive tool to detect early signs of cardiovascular predisposition following FGR. Clinical implementation yet faces multiple challenges including identification of the most optimal timing and the exact relation to long-term cardiovascular function in which echocardiography alone might be limited to reflect a child's vascular status. Future research should focus on myocardial strain analysis and the combination of other (non)imaging techniques for an improved risk estimation.</p

    Understanding changes in echocardiographic parameters at different ages following fetal growth restriction:a systematic review and meta-analysis

    Get PDF
    Fetal growth restriction (FGR) increases cardiovascular risk by cardiac remodeling and programming. This systematic review and meta-analysis across species examines the use of echocardiography in FGR offspring at different ages. PubMed and Embase.com were searched for animal and human studies reporting on echocardiographic parameters in placental insufficiency- induced FGR offspring. We included six animal and 49 human studies. Although unable to perform a meta-analysis of animal studies because of insufficient number of studies per individual outcome, all studies showed left ventricular dysfunction. Our meta-analyses of human studies revealed a reduced left ventricular mass, interventricular septum thickness, mitral annular peak velocity, and mitral lateral early diastolic velocity at neonatal age. No echocardiographic differences during childhood were observed, although the small age range and number of studies limited these analyses. Only two studies at adult age were performed. Meta-regression on other influential factors was not possible due to underreporting. The few studies on myocardial strain analysis showed small changes in global longitudinal strain in FGR offspring. The quality of the human studies was considered low and the risk of bias in animal studies was mostly unclear. Echocardiography may offer a noninvasive tool to detect early signs of cardiovascular predisposition following FGR. Clinical implementation yet faces multiple challenges including identification of the most optimal timing and the exact relation to long-term cardiovascular function in which echocardiography alone might be limited to reflect a child's vascular status. Future research should focus on myocardial strain analysis and the combination of other (non)imaging techniques for an improved risk estimation.</p

    Ketone Ester Treatment Improves Cardiac Function and Reduces Pathologic Remodeling in Preclinical Models of Heart Failure

    Get PDF
    BACKGROUND: Accumulating evidence suggests that the failing heart reprograms fuel metabolism toward increased utilization of ketone bodies and that increasing cardiac ketone delivery ameliorates cardiac dysfunction. As an initial step toward development of ketone therapies, we investigated the effect of chronic oral ketone ester (KE) supplementation as a prevention or treatment strategy in rodent heart failure models. METHODS: Two independent rodent heart failure models were used for the studies: transverse aortic constriction/myocardial infarction (MI) in mice and post-MI remodeling in rats. Seventy-five mice underwent a prevention treatment strategy with a KE comprised of hexanoyl-hexyl-3-hydroxybutyrate KE (KE-1) diet, and 77 rats were treated in either a prevention or treatment regimen using a commercially available β-hydroxybutyrate-(R)-1,3-butanediol monoester (DeltaG; KE-2) diet. RESULTS: The KE-1 diet in mice elevated β-hydroxybutyrate levels during nocturnal feeding, whereas the KE-2 diet in rats induced ketonemia throughout a 24-hour period. The KE-1 diet preventive strategy attenuated development of left ventricular dysfunction and remodeling post-transverse aortic constriction/MI (left ventricular ejection fraction±SD, 36±8 in vehicle versus 45±11 in KE-1; P=0.016). The KE-2 diet therapeutic approach also attenuated left ventricular dysfunction and remodeling post-MI (left ventricular ejection fraction, 41±11 in MI-vehicle versus 61±7 in MI-KE-2; P<0.001). In addition, ventricular weight, cardiomyocyte cross-sectional area, and the expression of ANP (atrial natriuretic peptide) were significantly attenuated in the KE-2-treated MI group. However, treatment with KE-2 did not influence cardiac fibrosis post-MI. The myocardial expression of the ketone transporter and 2 ketolytic enzymes was significantly increased in rats fed KE-2 diet along with normalization of myocardial ATP levels to sham values. CONCLUSIONS: Chronic oral supplementation with KE was effective in both prevention and treatment of heart failure in 2 preclinical animal models. In addition, our results indicate that treatment with KE reprogrammed the expression of genes involved in ketone body utilization and normalized myocardial ATP production following MI, consistent with provision of an auxiliary fuel. These findings provide rationale for the assessment of KEs as a treatment for patients with heart failure
    corecore