89 research outputs found

    Comparison of Sintering Methods and Conductive Adhesives for Interconnections in Inkjet-Printed Flexible Electronics

    Get PDF
    Increasing demands for flexibility and stretchability for electronic devices are driving the research for novel fabrication technologies. Inkjet-printing is one of these novel electronics fabrication techniques studied and developed globally in recent years and it has some interesting benefits over traditional lithography-based techniques, mainly its additive and digital nature. Traditional manufacturing methods are mature techniques and the processes are well defined and optimized for large scale manufacturing and inkjet-printing is not going to replace the lithography as such for large scale manufacturing. Inkjet-printing does, however, enable whole new ways of electronics fabrication, such as high part-to-part customization and 3D processability, which have previously been either very challenging or even impossible.So far research has focused mainly on inkjet-printing itself and the jetting process is understood fairly well. However, at the moment printed semiconductor materials are far inferior to traditional semiconductor components and can not enable the same level of functionality or connectivity. Hybrid systems, combining the high performance of traditional semiconductor components and benefits of inkjet-printing, are studied as a solution for fabricating high performance devices with novel fabrication techniques. Hybrid systems require the ability to attach external components to the printed structures and this integration was chosen as one of the main topic for this thesis work as it had not been studied previously and the knowledge was required for developing inkjet-printing.This thesis analyzes inkjet-printed hybrid systems and focuses on system level integration. The work is done on interconnections including both the sintering of metallic nanoparticles as well as external component interconnections and circuit board to circuit board connections. Sintering research is focused on alternative sintering methods to traditional thermal sintering and evaluation of their usability in electronics fabrication. Electrically conductive adhesives are studied as the main method of forming external connection to components and to other circuit boards.In the research related to this thesis alternative sintering methods were found to be suitable replacements for traditional thermal sintering with the advantages and disadvantages varying between different technologies. Laser and intense pulsed lighting were generally found to be the most promising techniques for inkjet-printed structures. External connections to traditional surface mounted components as well as other printed circuit boards were also successfully demonstrated in the related publications using electrically conductive adhesive materials. Both the electrical performance and long term reliability of the conductive adhesives were found to be inferior to solder-based interconnections but observations show that the difference is caused by the adhesive material itself, not by the use of inkjet-printing. Thus adhesives can be considered as a viable method for forming external interconnections on inkjet-printed structures

    Importance of 3D and Inkjet Printing For Tony Stark and the Iron Man Suit

    Get PDF
    For decades we have used printers to print superheroes on the pages of comic books but could printing technologies actually be used to print real life superheroes? 3D and functional printing technologies have advanced greatly in recent years and even though these technologies cannot be used to print heroes themselves, they can certainly be used for equipment manufacturing. One character that could or may use 3D printing to rapidly produce prototypes and final versions of new technologies is Tony Stark. As the inventor and primary user of the Iron Man suit, Stark has designed a wearable suit that is not only a weapon but also protects him. However, in battle the suit can become damaged and require urgent repairs. To aid in these repairs, Tony Stark could turn to 3D printing technologies to produce new components for the suit. In this paper we will outline 3D printing technologies and describe their current applications. We will then discuss how 3D printing is being used to print electronics and the ramifications for Tony Stark, his Iron Man suit and the potential use for a real Iron Man suit

    Lost at high latitudes : Arctic and endemic plants under threat as climate warms

    Get PDF
    Aim: Species' biogeographical patterns are already being altered by climate change. Here, we provide predictions of the impacts of a changing climate on species' geographical ranges within high-latitude mountain flora on a sub-continental scale. We then examined the forecasted changes in relation to species' biogeographic histories. Location: Fennoscandia, Northern Europe (55-72 degrees N). Methods: We examined the sensitivity of 164 high-latitude mountain species to changing climate by modelling their distributions in regard to climate, local topography and geology at a 1 km(2) resolution. Using an ensemble of six statistical modelling techniques and data on current (1981-2010) and future (2070-2099) climate based on three Representative Concentration Pathways (RCPs 2.6, 4.5, 8.5), we developed projections of current and future ranges. Results: The average species richness of the mountain flora is predicted to decrease by 15%-47% per 1 km(2) cell, depending on the climate scenario considered. Arctic flora is projected to undergo severe range loss along with non-poleward range contractions, while alpine flora is forecasted to find suitable habitat in a warmer North. A substantial majority (71%-92%) of the studied species are projected to lose more than half of their present range by the year 2100. Species predicted to lose all suitable habitat had ranges centred in the northernmost (>68 degrees N) part of continental Europe. Main conclusions: Climate change is predicted to substantially diminish the extent and richness of Europe's high-latitude mountain flora. Interestingly, species' biogeographic histories affect their vulnerability to climate change. The vulnerability of true Arctic and endemic species marks them as highly important for conservation decisions.Peer reviewe

    Dwarf Shrubs Impact Tundra Soils : Drier, Colder, and Less Organic Carbon

    Get PDF
    In the tundra, woody plants are dispersing towards higher latitudes and altitudes due to increasingly favourable climatic conditions. The coverage and height of woody plants are increasing, which may influence the soils of the tundra ecosystem. Here, we use structural equation modelling to analyse 171 study plots and to examine if the coverage and height of woody plants affect the growing-season topsoil moisture and temperature (< 10 cm) as well as soil organic carbon stocks (< 80 cm). In our study setting, we consider the hierarchy of the ecosystem by controlling for other factors, such as topography, wintertime snow depth and the overall plant coverage that potentially influence woody plants and soil properties in this dwarf shrub-dominated landscape in northern Fennoscandia. We found strong links from topography to both vegetation and soil. Further, we found that woody plants influence multiple soil properties: the dominance of woody plants inversely correlated with soil moisture, soil temperature, and soil organic carbon stocks (standardised regression coefficients = - 0.39; - 0.22; - 0.34, respectively), even when controlling for other landscape features. Our results indicate that the dominance of dwarf shrubs may lead to soils that are drier, colder, and contain less organic carbon. Thus, there are multiple mechanisms through which woody plants may influence tundra soils.Peer reviewe

    Microclimate temperature variations from boreal forests to the tundra

    Get PDF
    Microclimate varies greatly over short horizontal and vertical distances, and timescales. This multi-level heterogeneity influences terrestrial biodiversity and ecosystem functions by determining the ambient environment where organisms live in. Fine-scale heterogeneity in microclimate temperatures is driven by local topography, land and water cover, snow, and soil characteristics. However, their relative influence over boreal and tundra biomes and in different seasons, has not been comprehensively quantified. Here, we aim to (1) quantify temperature variations measured at three heights: soil (-6 cm), near-surface (15 cm) and air (150 cm), and (2) determine the relative influence of the environmental variables in driving thermal variability. We measured temperature at 446 sites within seven focus areas covering large macroclimatic, topographic, and ecosystem gradients (tundra, mires, forests) of northern Europe. Our data, consisting of over 60 million temperature readings during the study period of 2019/11-2020/10, reveal substantial thermal variability within and across the focus areas. Near-surface temperatures in the tundra showed the greatest instantaneous differences within a given focus area (32.3 degrees C) while the corresponding differences for soil temperatures ranged from 10.0 degrees C (middle boreal forest) to 27.1 degrees C (tundra). Instantaneous differences in wintertime air temperatures were the largest in the tundra (up to 25.6 degrees C, median 4.2 degrees C), while in summer the differences were largest in the southern boreal forest (13.1 degrees C, median 4.8 degrees C). Statistical analyses indicate that monthly-aggregated temperature variations in boreal forests are closely linked to water bodies, wetlands, and canopy cover, whereas in the tundra, variation was linked to elevation, topographic solar radiation, and snow cover. The results provide new understanding on the magnitude of microclimate temperature variability and its seasonal drivers and will help to project local impacts of climate change on boreal forest and tundra ecosystems.Peer reviewe

    Bioclimatic atlas of the terrestrial Arctic

    Get PDF
    The Arctic is the region on Earth that is warming at the fastest rate. In addition to rising means of temperature-related variables, Arctic ecosystems are affected by increasingly frequent extreme weather events causing disturbance to Arctic ecosystems. Here, we introduce a new dataset of bioclimatic indices relevant for investigating the changes of Arctic terrestrial ecosystems. The dataset, called ARCLIM, consists of several climate and event-type indices for the northern high-latitude land areas > 45 degrees N. The indices are calculated from the hourly ERA5-Land reanalysis data for 1950-2021 in a spatial grid of 0.1 degree (similar to 9 km) resolution. The indices are provided in three subsets: (1) the annual values during 1950-2021; (2) the average conditions for the 1991-2020 climatology; and (3) temporal trends over 1951-2021. The 72-year time series of various climate and event-type indices draws a comprehensive picture of the occurrence and recurrence of extreme weather events and climate variability of the changing Arctic bioclimate.Peer reviewe

    Snow is an important control of plant community functional composition in oroarctic tundra

    Get PDF
    The functional composition of plant communities is a critical modulator of climate change impacts on ecosystems, but it is not a simple function of regional climate. In the Arctic tundra, where climate change is proceeding the most rapidly, communities have not shifted their trait composition as predicted by spatial temperature-trait relationships. Important causal pathways are thus missing from models of trait composition change. Here, we study causes of plant community functional variation in an oroarctic tundra landscape in Kilpisjarvi, Finland. We consider the community-weighted means of plant vegetative height, as well as two traits related to the leaf economic spectrum. Specifically, we model their responses to locally measured summer air temperature, snow conditions, and soil resource levels. For each of the traits, we also quantify the importance of intraspecific trait variation (ITV) for between-community functional differences and trait-environment matching. Our study shows that in a tundra landscape (1) snow is the most influential abiotic variable affecting functional composition, (2) vegetation height is under weak local environmental control, whereas leaf economics is under strong local environmental control, (3) the relative magnitude of ITV differs between traits, and (4) ITV is not very consequential for community-level trait-environment relationships. Our analyses highlight the importance of winter conditions for community functional composition in seasonal areas. We show that winter climate change can either amplify or counter the effects summer warming, depending on the trait.Peer reviewe

    Geomorphological processes shape plant community traits in the Arctic

    Get PDF
    Aim Geomorphological processes profoundly affect plant establishment and distributions, but their influence on functional traits is insufficiently understood. Here, we unveil trait-geomorphology relationships in Arctic plant communities. Location High-Arctic Svalbard, low-Arctic Greenland and sub-Arctic Fennoscandia. Time period 2011-2018. Major taxa studied Vascular plants. Methods We collected field-quantified data on vegetation, geomorphological processes, microclimate and soil properties from 5,280 plots and 200 species across the three Arctic regions. We combined these data with database trait records to relate local plant community trait composition to dominant geomorphological processes of the Arctic, namely cryoturbation, deflation, fluvial processes and solifluction. We investigated the relationship between plant functional traits and geomorphological processes using hierarchical generalized additive modelling. Results Our results demonstrate that community-level traits are related to geomorphological processes, with cryoturbation most strongly influencing both structural and leaf economic traits. These results were consistent across regions, suggesting a coherent biome-level trait response to geomorphological processes. Main conclusions The results indicate that geomorphological processes shape plant community traits in the Arctic. We provide empirical evidence for the existence of generalizable relationships between plant functional traits and geomorphological processes. The results indicate that the relationships are consistent across these three distinct tundra regions and that geomorphological processes should be considered in future investigations of functional traits.Peer reviewe

    Geomorphological processes shape plant community traits in the Arctic

    Get PDF
    Aim Geomorphological processes profoundly affect plant establishment and distributions, but their influence on functional traits is insufficiently understood. Here, we unveil trait-geomorphology relationships in Arctic plant communities. Location High-Arctic Svalbard, low-Arctic Greenland and sub-Arctic Fennoscandia. Time period 2011-2018. Major taxa studied Vascular plants. Methods We collected field-quantified data on vegetation, geomorphological processes, microclimate and soil properties from 5,280 plots and 200 species across the three Arctic regions. We combined these data with database trait records to relate local plant community trait composition to dominant geomorphological processes of the Arctic, namely cryoturbation, deflation, fluvial processes and solifluction. We investigated the relationship between plant functional traits and geomorphological processes using hierarchical generalized additive modelling. Results Our results demonstrate that community-level traits are related to geomorphological processes, with cryoturbation most strongly influencing both structural and leaf economic traits. These results were consistent across regions, suggesting a coherent biome-level trait response to geomorphological processes. Main conclusions The results indicate that geomorphological processes shape plant community traits in the Arctic. We provide empirical evidence for the existence of generalizable relationships between plant functional traits and geomorphological processes. The results indicate that the relationships are consistent across these three distinct tundra regions and that geomorphological processes should be considered in future investigations of functional traits.Peer reviewe
    • …
    corecore