2 research outputs found

    Flight metabolic rate has contrasting effects on dispersal in the two sexes of the Glanville fritillary butterfly

    No full text
    Evolution of dispersal is affected by context-specific costs and benefits. One example is sex-biased dispersal in mammals and birds. While many such patterns have been described, the underlying mechanisms are poorly understood. Here, we study genetic and phenotypic traits that affect butterfly flight capacity and examine how these traits are related to dispersal in male and female Glanville fritillary butterflies (Melitaea cinxia). We performed two mark-recapture experiments to examine the associations of individuals' peak flight metabolic rate (MRpeak) and Pgi genotype with their dispersal in the field. In a third experiment, we studied tethered flight in the laboratory. MRpeak was negatively correlated with dispersal distance in males but the trend was positive in females, and the interaction between MRpeak and sex was significant for long-distance dispersal. A similar but nonsignificant trend was found in relation to molecular variation at Pgi, which encodes a glycolytic enzyme: the genotype associated with high MRpeak tended to be less dispersive in males but more dispersive in females. The same pattern was repeated in the tethered flight experiment: the relationship between MRpeak and flight duration was positive in females but negative in males. These results suggest that females with high flight capacity are superior in among-population dispersal, which facilitates the spatial spreading of their reproductive effort. In contrast, males with high flight capacity may express territorial behaviour, and thereby increase the number of matings, whereas inferior males may be forced to disperse. Thus, flight capacity has opposite associations with dispersal rate in the two sexes.</p

    The genetics of monarch butterfly migration and warning colouration

    No full text
    The monarch butterfly, Danaus plexippus, is famous for its spectacular annual migration across North America, recent worldwide dispersal, and orange warning colouration. Despite decades of study and broad public interest, we know little about the genetic basis of these hallmark traits. Here we uncover the history of the monarch's evolutionary origin and global dispersal, characterize the genes and pathways associated with migratory behaviour, and identify the discrete genetic basis of warning colouration by sequencing 101 Danaus genomes from around the globe. The results rewrite our understanding of this classic system, showing that D. plexippus was ancestrally migratory and dispersed out of North America to occupy its broad distribution. We find the strongest signatures of selection associated with migration centre on flight muscle function, resulting in greater flight efficiency among migratory monarchs, and that variation in monarch warning colouration is controlled by a single myosin gene not previously implicated in insect pigmentation
    corecore