4 research outputs found

    Pathology Associated with Hormones of Adrenal Cortex

    Get PDF
    Adrenal gland is an endocrine organ comprising of an outer cortex and inner medulla. These secrete various hormones that have a vital role in maintaining the normal homeostasis of the body. Lesions of adrenal cortex are quite common to encounter and most of these are related to the hormones secreted by three layers of adrenal cortex: the zona glomerulosa, the zona fasciculata, and the zona reticularis. Also it is very infrequent to encounter metastatic lesions in the adrenal glands too. So it is very important as a part of a clinician as well as a pathologist to know the pattern in which these hormones are secreted along with their physiological roles. Thus this chapter includes the disease that are related to excess as well as deficiencies of the hormones secreted by adrenal cortex. The chapter also includes various genetic syndromes that are associated with the disorders associated with hormones of adrenal cortex. The last part of the chapter includes a brief description of various benign as well as malignant lesions, the pathological as well as the etiological aspects and the hormonal abnormalities associated. This chapter thus mainly focuses on the pathology associated with the adrenal cortex and hormones secreted by the various layers of adrenal cortex

    Mitochondrial Cytopathies of the Renal System

    Get PDF
    Mitochondria are major intracellular organelles with a variety of critical roles like adenosine triphosphate production, metabolic modulation, generation of reactive oxygen species, maintenance of intracellular calcium homeostasis, and the regulation of apoptosis. Mitochondria often undergo transformation in both physiological and pathological conditions. New concepts point that mitochondrial shape and structure are intimately linked with their function in the kidneys and diseases related to mitochondrial dysfunction have been identified. Diseases associated with mitochondrial dysfunction are termed as “mitochondrial cytopathies”. Evidence support that there is a role of mitochondrial dysfunction in the pathogenesis of two common pathways of end-stage kidney disease, namely, chronic kidney disease (CKD) and acute kidney injury (AKI). Mitochondrial cytopathies in kidneys mainly manifest as focal segmental glomerular sclerosis, tubular defects, and as cystic kidney diseases. The defects implicated are mutations in mtDNA and nDNA. The proximal tubular cells are relatively vulnerable to oxidative stress and are therefore apt to suffer from respiratory chain defects and manifest as either loss of electrolyte or low-molecular-weight proteins. Patients with mitochondrial tubulopathy are usually accompanied by myoclonic epilepsy and ragged red muscle fibers (MERRF), and Pearson’s, Kearns-Sayre, and Leigh syndromes. The majority of genetic mutations detected in these diseases are fragment deletions of mtDNA. Studies have shown significantly increased ROS production, upregulation of COX I and IV expressions, and inactivation of complex IV in peripheral blood mononuclear cells of patients with stage IV–V CKD, thereby demonstrating the close association between mitochondrial dysfunction and progression to CKD. Furthermore, the mechanisms that translate cellular cues and demands into mitochondrial remodeling and cellular damage, including the role of microRNAs and lncRNAs, are examined with the final goal of identifying mitochondrial targets to improve treatment of patients with chronic kidney diseases

    Reporting trends, practices, and resource utilization in neuroendocrine tumors of the prostate gland: a survey among thirty-nine genitourinary pathologists

    Get PDF
    Background: Neuroendocrine differentiation in the prostate gland ranges from clinically insignificant neuroendocrine differentiation detected with markers in an otherwise conventional prostatic adenocarcinoma to a lethal high-grade small/large cell neuroendocrine carcinoma. The concept of neuroendocrine differentiation in prostatic adenocarcinoma has gained considerable importance due to its prognostic and therapeutic ramifications and pathologists play a pivotal role in its recognition. However, its awareness, reporting, and resource utilization practice patterns among pathologists are largely unknown. Methods: Representative examples of different spectrums of neuroendocrine differentiation along with a detailed questionnaire were shared among 39 urologic pathologists using the survey monkey software. Participants were specifically questioned about the use and awareness of the 2016 WHO classification of neuroendocrine tumors of the prostate, understanding of the clinical significance of each entity, and use of different immunohistochemical (IHC) markers. De-identified respondent data were analyzed. Results: A vast majority (90%) of the participants utilize IHC markers to confirm the diagnosis of small cell neuroendocrine carcinoma. A majority (87%) of the respondents were in agreement regarding the utilization of type of IHC markers for small cell neuroendocrine carcinoma for which 85% of the pathologists agreed that determination of the site of origin of a high-grade neuroendocrine carcinoma is not critical, as these are treated similarly. In the setting of mixed carcinomas, 62% of respondents indicated that they provide quantification and grading of the acinar component. There were varied responses regarding the prognostic implication of focal neuroendocrine cells in an otherwise conventional acinar adenocarcinoma and for Paneth cell-like differentiation. The classification of large cell neuroendocrine carcinoma was highly varied, with only 38% agreement in the illustrated case. Finally, despite the recommendation not to perform neuroendocrine markers in the absence of morphologic evidence of neuroendocrine differentiation, 62% would routinely utilize IHC in the work-up of a Gleason score 5 + 5 = 10 acinar adenocarcinoma and its differentiation from high-grade neuroendocrine carcinoma. Conclusion: There is a disparity in the practice utilization patterns among the urologic pathologists with regard to diagnosing high-grade neuroendocrine carcinoma and in understanding the clinical significance of focal neuroendocrine cells in an otherwise conventional acinar adenocarcinoma and Paneth cell-like neuroendocrine differentiation. There seems to have a trend towards overutilization of IHC to determine neuroendocrine differentiation in the absence of neuroendocrine features on morphology. The survey results suggest a need for further refinement and development of standardized guidelines for the classification and reporting of neuroendocrine differentiation in the prostate gland
    corecore