27 research outputs found

    WTH3 is a direct target of the p53 protein

    Get PDF
    Previous results showed that overexpression of the WTH3 gene in multidrug resistance (MDR) cells reduced MDR1 gene expression and converted their resistance to sensitivity to various anticancer drugs. The WTH3 gene promoter was found to be differentially regulated in paired MDR vs non-MDR MCF7 cells owing to epigenetic modifications and transcription factor modulations. To understand further the mechanisms that govern WTH3's differential expression, we uncovered a p53-binding site in its promoter, which indicated that WTH3 could be regulated by the p53 gene. This hypothesis was then tested by different strategies. The resulting data revealed that (1) the WTH3 promoter was upregulated by the p53 transgene in diverse host cells; (2) there was a correlation between WTH3 expression levels and p53 gene status in a cell line panel; (3) a WTH3 promoter region was directly targeted by the p53 protein in vitro and in vivo. In addition, overexpression of the WTH3 gene promoted the apoptotic phenotype in host cells. On the basis of these findings, we believe that the negative role played by the WTH3 gene in MDR development is through its proapoptotic potential that is regulated by multiple mechanisms at the transcription level, and one of these mechanisms is linked to the p53 gene

    Growth Inhibition of Human Gynecologic and Colon Cancer Cells by Phyllanthus watsonii through Apoptosis Induction

    Get PDF
    Phyllanthus watsonii Airy Shaw is an endemic plant found in Peninsular Malaysia. Although there are numerous reports on the anti cancer properties of other Phyllanthus species, published information on the cytotoxicity of P. watsonii are very limited. The present study was carried out with bioassay-guided fractionation approach to evaluate the cytotoxicity and apoptosis induction capability of the P. watsonii extracts and fractions on human gynecologic (SKOV-3 and Ca Ski) and colon (HT-29) cancer cells. P. watsonii extracts exhibited strong cytotoxicity on all the cancer cells studied with IC50 values of ≤ 20.0 µg/mL. Hexane extract of P. watsonii was further subjected to bioassay-guided fractionation and yielded 10 fractions (PW-1→PW-10). PW-4→PW-8 portrayed stronger cytotoxic activity and was further subjected to bioassay-guided fractionation and resulted with 8 sub-fractions (PPWH-1→PPWH-8). PPWH-7 possessed greatest cytotoxicity (IC50 values ranged from 0.66 – 0.83 µg/mL) and was selective on the cancer cells studied. LC-MS/MS analysis of PPWH-7 revealed the presence of ellagic acid, geranic acid, glochidone, betulin, phyllanthin and sterol glucoside. Marked morphological changes, ladder-like appearance of DNA and increment in caspase-3 activity indicating apoptosis were clearly observed in both human gynecologic and colon cancer cells treated with P. watsonii especially with PPWH-7. The study also indicated that P. watsonii extracts arrested cell cycle at different growth phases in SKOV-3, Ca Ski and HT-29 cells. Cytotoxic and apoptotic potential of the endemic P. watsonii was investigated for the first time by bioassay-guided approach. These results demonstrated that P. watsonii selectively inhibits the growth of SKOV-3, Ca Ski and HT-29 cells through apoptosis induction and cell cycle modulation. Hence, P. watsonii has the potential to be further exploited for the discovery and development of new anti cancer drugs

    Role of oxygen radicals generated by NADPH oxidase in apoptosis induced in human leukemia cells.

    No full text
    We have used a human leukemia cell line that, after homologous recombination knockout of the gp91-phox subunit of the phagocyte respiratory-burst oxidase cytochrome b-558, mimics chronic granulomatous disease (X-CGD) to study the role of oxygen radicals in apoptosis. Camptothecin (CPT), a topoisomerase I inhibitor, induced significantly more apoptosis in PLB-985 cells than in X-CGD cells. Sensitivity to CPT was enhanced after neutrophilic differentiation, but was lost after monocytic differentiation. No difference between the two cell lines was observed after treatment with other apoptosis inducers, including etoposide, ultraviolet radiation, ionizing radiation, hydrogen peroxide, or 7-hydroxystaurosporine. After granulocytic differentiation of both cell lines, CPT still induced apoptosis, suggesting independence from replication in fully differentiated and growth-arrested cells. Pyrrolidine dithiocarbamate (an antioxidant inhibitor of NF-kappaB) and catalase partially inhibited CPT-induced DNA fragmentation in granulocytic-differentiated PLB-985 cells, but had no effect in X-CGD cells. Flow cytometry analysis revealed that reactive oxygen intermediates were generated in CPT-treated PLB-985 cells. These data indicate that oxygen radicals generated by NADPH oxidase may contribute directly or indirectly to CPT-induced apoptosis in human leukemia and in neutrophilic-differentiated cells
    corecore