84 research outputs found

    Functional outcome and quality of life 5 and 12.5 years after aneurysmal subarachnoid haemorrhage

    Get PDF
    Patients who recover from aneurysmal subarachnoid haemorrhage (SAH) often remain disabled or have persisting symptoms with a reduced quality of life (QoL). We assessed functional outcome and QoL 5 and 12.5 years after SAH. In a consecutive series of 64 patients with mean age at SAH of 51 years, initial outcome assessments had been performed at 4 and 18 months after SAH. At the initial and current outcome assessments, functional outcome was measured with the modified Rankin Scale (mRS) and QoL with the SF-36 and a visual analogue scale (VAS). We studied the change in outcome measurements over time. We used the non-parametric Wilcoxon test to compare differences in mRS grades and calculated differences with corresponding 95% confidence intervals in the domain scores of the SF-36 and the VAS. After 5 years, seven patients had died and five patients had missing data. Compared with the 4-month follow-up, the mRS had improved in 29 of the 52 patients, remained similar in 19 patients. The overall QoL (SF-36 domains and VAS score) was better. At 12.5 years an additional six patients had died. Compared to the 4-month study, 25 of the 46 remaining patients had improved mRS, 12 had remained the same and in nine patients the mRS had worsened. Between the 5 and the 12.5 years follow-up, the improvement in mRS had decreased but patients reported overall a better QoL. Among long-time survivors, QoL may improve more than a decade after SAH

    Occurrence and impact of delayed cerebral ischemia after coiling and after clipping in the International Subarachnoid Aneurysm Trial (ISAT)

    Get PDF
    Delayed cerebral ischemia (DCI) is an important cause of poor outcome after aneurysmal subarachnoid hemorrhage (SAH). We studied differences in incidence and impact of DCI as defined clinically after coiling and after clipping in the International Subarachnoid Aneurysm Trial. We calculated odds ratios (OR) for DCI for clipping versus coiling with logistic regression analysis. With coiled patients without DCI as the reference group, we calculated ORs for poor outcome at 2 months and 1 year for coiled patients with DCI and for clipped patients without, and with DCI. With these ORs, we calculated relative excess risk due to Interaction (RERI). Clipping increased the risk of DCI compared to coiling in the 2,143 patients OR 1.24, 95% confidence interval (95% CI 1.01–1.51). Coiled patients with DCI, clipped patients without DCI, and clipped patients with DCI all had higher risks of poor outcome than coiled patients without DCI. Clipping and DCI showed no interaction for poor outcome at 2 months: RERI 0.12 (95% CI −1.16 to 1.40) or 1 year: RERI −0.48 (95% CI −1.69 to 0.74). Only for patients treated within 4 days, coiling and DCI was associated with a poorer outcome at 1 year than clipping and DCI (RERI −2.02, 95% CI −3.97 to −0.08). DCI was more common after clipping than after coiling in SAH patients in ISAT. Impact of DCI on poor outcome did not differ between clipped and coiled patients, except for patients treated within 4 days, in whom DCI resulted more often in poor outcome after coiling than after clipping

    Risk, Clinical Course, and Outcome of Ischemic Stroke in Patients Hospitalized With COVID-19: A Multicenter Cohort Study

    Get PDF
    BACKGROUND AND PURPOSE: The frequency of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) varies in the current literature, and risk factors are unknown. We assessed the incidence, risk factors, and outcomes of acute ischemic stroke in hospitalized patients with COVID-19. METHODS: We included patients with a laboratory-confirmed SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) infection admitted in 16 Dutch hospitals participating in the international CAPACITY-COVID registry between March 1 and August 1, 2020. Patients were screened for the occurrence of acute ischemic stroke. We calculated the cumulative incidence of ischemic stroke and compared risk factors, cardiovascular complications, and in-hospital mortality in patients with and without ischemic stroke. RESULTS: We included 2147 patients with COVID-19, of whom 586 (27.3%) needed treatment at an intensive care unit. Thirty-eight patients (1.8%) had an ischemic stroke. Patients with stroke were older but did not differ in sex or cardiovascular risk factors. Median time between the onset of COVID-19 symptoms and diagnosis of stroke was 2 weeks. The incidence of ischemic stroke was higher among patients who were treated at an intensive care unit (16/586; 2.7% versus nonintensive care unit, 22/1561; 1.4%; P=0.039). Pulmonary embolism was more common in patients with (8/38; 21.1%) than in those without stroke (160/2109; 7.6%; adjusted risk ratio, 2.08 [95% CI, 1.52–2.84]). Twenty-seven patients with ischemic stroke (71.1%) died during admission or were functionally dependent at discharge. Patients with ischemic stroke were at a higher risk of in-hospital mortality (adjusted risk ratio, 1.56 [95% CI, 1.13–2.15]) than patients without stroke. CONCLUSIONS: In this multicenter cohort study, the cumulative incidence of acute ischemic stroke in hospitalized patients with COVID-19 was ≈2%, with a higher risk in patients treated at an intensive care unit. The majority of stroke patients had a poor outcome. The association between ischemic stroke and pulmonary embolism warrants further investigation
    corecore