206 research outputs found

    Cognitive control in media multitaskers:Two replication studies and a meta-Analysis

    Get PDF
    Ophir, Nass, and Wagner (2009, Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15583–15587) found that people with high scores on the media-use questionnaire—a questionnaire that measures the proportion of media-usage time during which one uses more than one medium at the same time—show impaired performance on various tests of distractor filtering. Subsequent studies, however, did not all show this association between media multitasking and distractibility, thus casting doubt on the reliability of the initial findings. Here, we report the results of two replication studies and a meta-analysis that included the results from all published studies into the relationship between distractor filtering and media multitasking. Our replication studies included a total of 14 tests that had an average replication power of 0.81. Of these 14 tests, only five yielded a statistically significant effect in the direction of increased distractibility for people with higher scores on the media-use questionnaire, and only two of these effects held in a more conservative Bayesian analysis. Supplementing these outcomes, our meta-analysis on a total of 39 effect sizes yielded a weak but significant association between media multitasking and distractibility that turned nonsignificant after correction for small-study effects. Taken together, these findings lead us to question the existence of an association between media multitasking and distractibility in laboratory tasks of information processing

    Forget me if you can:Attentional capture by to-be-remembered and to-be-forgotten visual stimuli

    Get PDF
    Previous studies on directed forgetting in visual working memory (VWM) have shown that if people are cued to remember only a subset of the items currently held in VWM, they will completely forget the uncued, no-longer relevant it ems. While this finding is indicative of selective remembering, it remains unclear whether directed forgetting can also occur in the absence of any concurrent to-be-remembered information. In the current study, we addressed this matter by asking participants to memorize a single object that could be followed by a cue to forget or remember this object. Following the cue, we assessed the object’s activation in VWM by determining whether a matching distractor would capture attention in a visual search task. The results showed that, compared to a cue to remember, a cue to forget led to a reduced likelihood of attentional capture by a matching distractor. In addition, we found that capture effects by to-be-remembered and to-be-forgotten dis tractors remained stable as the interval between the onset of the cue and the search task increased from 700 ms to 3900 ms. We conclude that, in the absence of any to-be-remembered objects, an instruction to forget an object held in WM leads to a rapid but incomplete deactivation of the representation of that object, thus allowing it to continue to produce a weak biasing effect on attentional selection for several seconds after the instruction to forget

    The role of depth of encoding in attentional capture

    Get PDF
    The aim of the current study was to examine whether depth of encoding influences attentional capture by recently attended objects. In Experiment 1, participants first had to judge whether a word referred to a living or a nonliving thing (deep encoding condition) or whether the word was written in lower- or uppercase (shallow encoding condition), and they then had to identify a digit displayed midway in a rapid serial visual presentation (RSVP) stream of 8 pictures. A picture corresponding to the previously processed word was presented either before or after the target digit. The results showed that this picture captured attention, thus resulting in an attentional blink for identification of a target digit, in the deep encoding condition but not in the shallow encoding condition. In Experiment 2, this capture effect was found to be abolished when an additional working-memory (WM) task was performed directly after the word-judgment task, suggesting that the capture effect stemmed from residual WM activation that could be erased by means of a secondary WM task. Taken together, these results suggest that deep and shallow encoding result in different degrees of WM activation, which in turn influences the likelihood of memory-driven attentional capture

    Digit-colour synaesthesia only enhances memory for colours in a specific context:A new method of duration thresholds to measure serial recall

    Get PDF
    For digit-color synaesthetes, digits elicit vivid experiences of color that are highly consistent for each individual. The conscious experience of synaesthesia is typically unidirectional: Digits evoke colors but not vice versa. There is an ongoing debate about whether synaesthetes have a memory advantage over non-synaesthetes. One key question in this debate is whether synaesthetes have a general superiority or whether any benefit is specific to a certain type of material. Here, we focus on immediate serial recall and ask digit-color synaesthetes and controls to memorize digit and color sequences. We developed a sensitive staircase method manipulating presentation duration to measure participants' serial recall of both overlearned and novel sequences. Our results show that synaesthetes can activate digit information to enhance serial memory for color sequences. When color sequences corresponded to ascending or descending digit sequences, synaesthetes encoded these sequences at a faster rate than their non-synaesthetes counterparts and faster than non-structured color sequences. However, encoding color sequences is approximately 200 ms slower than encoding digit sequences directly, independent of group and condition, which shows that the translation process is time consuming. These results suggest memory advantages in synaesthesia require a modified dual-coding account, in which secondary (synaesthetically linked) information is useful only if it is more memorable than the primary information to be recalled. Our study further shows that duration thresholds are a sensitive method to measure subtle differences in serial recall performance

    Training modulates memory-driven capture

    Get PDF
    Attention is captured by information matching the contents of working memory. Though many factors modulate the amount of capture, there is surprising resistance to cognitive control. Capture occurs even when participants are instructed either that an item would never be a target or to drop that item from memory. Does the persistence of capture under these conditions reflect a rigidity in capture, or can properly motivated participants learn to completely suppress distractors and/or completely drop items from memory? Surprisingly, no studies have looked at the influence of extensive training of involuntary capture from working memory items. Here, we addressed whether training leads to a reduction or even elimination of memory-driven capture. After memorizing a single object, participants were cued to remember or to forget this object. Subsequently, they were asked to execute a search task. To measure capture, we compared search performances in displays that did and did not contain a distractor matching the earlier memorized object. Participants completed multiple experimental sessions over four days. The results showed that attentional capture by to-be-remembered distractors was reduced, but not eliminated in subsequent sessions compared with the first session. Training did not impact capture by to-be-forgotten objects. The results suggest observable, but limited, cognitive control over memory-driven capture

    Beyond a Mask and Against the Bottleneck: Retroactive Dual-Task Interference During Working Memory Consolidation of a Masked Visual Target

    Get PDF
    While studies on visual memory commonly assume that the consolidation of a visual stimulus into working memory is interrupted by a trailing mask, studies on dual-task interference suggest that the consolidation of a stimulus can continue for several hundred milliseconds after a mask. As a result, estimates of the time course of working memory consolidation differ more than an order of magnitude. Here, we contrasted these opposing views by examining if and for how long the processing of a masked display of visual stimuli can be disturbed by a trailing 2-alternative forced choice task (2-AFC; a color discrimination task or a visual or auditory parity judgment task). The results showed that the presence of the 2-AFC task produced a pronounced retroactive interference effect that dissipated across stimulus onset asynchronies of 250-1,000 ms, indicating that the processing elicited by the 2-AFC task interfered with the gradual consolidation of the earlier shown stimuli. Furthermore, this interference effect occurred regardless of whether the to-be-remembered stimuli comprised a string of letters or an unfamiliar complex visual shape, and it occurred regardless of whether these stimuli were masked. Conversely, the interference effect was reduced when the memory load for the 1st task was reduced, or when the 2nd task was a color detection task that did not require decision making. Taken together, these findings show that the formation of a durable and consciously accessible working memory trace for a briefly shown visual stimulus can be disturbed by a trailing 2-AFC task for up to several hundred milliseconds after the stimulus has been masked. By implication, the current findings challenge the common view that working memory consolidation involves an immutable central processing bottleneck, and they also make clear that consolidation does not stop when a stimulus is masked

    Media multitasking, mind-wandering, and distractibility:A large-scale study

    Get PDF
    Previous studies suggest that frequent media multitasking - the simultaneous use of different media at the same time - may be associated with increased susceptibility to internal and external sources of distraction. At the same time, other studies found no evidence for such associations. In the current study, we report the results of a large-scale study (N=261) in which we measured media multitasking with a short media-use questionnaire and measured distraction with a change-detection task that included different numbers of distractors. To determine whether internally generated distraction affected performance, we deployed experience-sampling probes during the change-detection task. The results showed that participants with higher media multitasking scores did not perform worse as distractor set size increased, they did not perform worse in general, and their responses on the experience-sampling probes made clear that they also did not experience more lapses of attention during the task. Critically, these results were robust across different methods of analysis (i.e., Linear Mixed Modeling, Bayes factors, and extreme-groups comparison). At the same time, our use of the short version of the media-use questionnaire might limit the generalizability of our findings. In light of our results, we suggest that future studies should ensure an adequate level of statistical power and implement a more precise measure for media multitasking
    • …
    corecore