4 research outputs found
Impaired Intestinal Farnesoid X Receptor Signaling in Cystic Fibrosis Mice
BACKGROUND & AIMS: The bile acid (BA)-activated farnesoid X receptor (FXR) controls hepatic BA synthesis and cell proliferation via the intestinal hormone fibroblast growth factor 19. Because cystic fibrosis (CF) is associated with intestinal dysbiosis, anomalous BA handling, and biliary cirrhosis, we investigated FXR signaling in CF. METHODS: Intestinal and hepatic expression of FXR target genes and inflammation markers was assessed in Cftr null mice and controls. Localization of the apical sodium-dependent BA transporter was assessed, and BAs in gastrointestinal tissues were analyzed. The CF microbiota was characterized and FXR signaling was investigated in intestinal tissue and organoids. RESULTS: Ileal murine fibroblast growth factor 19 ortholog (Fgf15) expression was strongly reduced in CF mice, compared with controls. Luminal BA levels and localization of apical sodium-dependent BA transporter was not affected, and BAs induced Fgf15 up to normal levels in CF ileum, ex vivo, and CF organoids. CF mice showed a dysbiosis that was associated with a marked up-regulation of genes involved in host-microbe interactions, including those involved in mucin glycosylation, antimicrobial defense, and Toll-like receptor signaling. Antibiotic treatment reversed the up-regulation of inflammatory markers and restored intestinal FXR signaling in CF mice. Conversely, FXR-dependent gene induction in ileal tissue and organoids was repressed by bacterial lipopolysaccharide and proinflammatory cytokines, respectively. Loss of intestinal FXR activity was associated with a markedly blunted hepatic trophic response to oral BA supplementation, and with impaired repression of Cyp7a1, the gene encoding the rate-limiting enzyme in BA synthesis. CONCLUSIONS: In CF mice, the gut microbiota represses intestinal FXR activity, and, consequently, FXR-dependent hepatic cell proliferation and feedback control of BA synthesis
OrgaSegment: deep-learning based organoid segmentation to quantify CFTR dependent fluid secretion
Epithelial ion and fluid transport studies in patient-derived organoids (PDOs) are increasingly being used for preclinical studies, drug development and precision medicine applications. Epithelial fluid transport properties in PDOs can be measured through visual changes in organoid (lumen) size. Such organoid phenotypes have been highly instrumental for the studying of diseases, including cystic fibrosis (CF), which is characterized by genetic mutations of the CF transmembrane conductance regulator (CFTR) ion channel. Here we present OrgaSegment, a MASK-RCNN based deep-learning segmentation model allowing for the segmentation of individual intestinal PDO structures from bright-field images. OrgaSegment recognizes spherical structures in addition to the oddly-shaped organoids that are a hallmark of CF organoids and can be used in organoid swelling assays, including the new drug-induced swelling assay that we show here. OrgaSegment enabled easy quantification of organoid swelling and could discriminate between organoids with different CFTR mutations, as well as measure responses to CFTR modulating drugs. The easy-to-apply label-free segmentation tool can help to study CFTR-based fluid secretion and possibly other epithelial ion transport mechanisms in organoids
CFTR Function Restoration upon Elexacaftor/Tezacaftor/Ivacaftor Treatment in Patient-Derived Intestinal Organoids with Rare CFTR Genotypes.
Cystic fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator ( CFTR) gene. The combination of the CFTR modulators elexacaftor, tezacaftor, and ivacaftor (ETI) enables the effective rescue of CFTR function in people with the most prevalent F508del mutation. However, the functional restoration of rare CFTR variants remains unclear. Here, we use patient-derived intestinal organoids (PDIOs) to identify rare CFTR variants and potentially individuals with CF that might benefit from ETI. First, steady-state lumen area (SLA) measurements were taken to assess CFTR function and compare it to the level observed in healthy controls. Secondly, the forskolin-induced swelling (FIS) assay was performed to measure CFTR rescue within a lower function range, and to further compare it to ETI-mediated CFTR rescue in CFTR genotypes that have received market approval. ETI responses in 30 PDIOs harboring the F508del mutation served as reference for ETI responses of 22 PDIOs with genotypes that are not currently eligible for CFTR modulator treatment, following European Medicine Agency (EMA) and/or U.S. Food and Drug Administration (FDA) regulations. Our data expand previous datasets showing a correlation between in vitro CFTR rescue in organoids and corresponding in vivo ppFEV1 improvement upon a CFTR modulator treatment in published clinical trials, and suggests that the majority of individuals with rare CFTR variants could benefit from ETI. CFTR restoration was further confirmed on protein levels using Western blot. Our data support that CFTR function measurements in PDIOs with rare CFTR genotypes can help to select potential responders to ETI, and suggest that regulatory authorities need to consider providing access to treatment based on the principle of equality for people with CF who do not have access to treatment
OrgaSegment: deep-learning based organoid segmentation to quantify CFTR dependent fluid secretion
Abstract Epithelial ion and fluid transport studies in patient-derived organoids (PDOs) are increasingly being used for preclinical studies, drug development and precision medicine applications. Epithelial fluid transport properties in PDOs can be measured through visual changes in organoid (lumen) size. Such organoid phenotypes have been highly instrumental for the studying of diseases, including cystic fibrosis (CF), which is characterized by genetic mutations of the CF transmembrane conductance regulator (CFTR) ion channel. Here we present OrgaSegment, a MASK-RCNN based deep-learning segmentation model allowing for the segmentation of individual intestinal PDO structures from bright-field images. OrgaSegment recognizes spherical structures in addition to the oddly-shaped organoids that are a hallmark of CF organoids and can be used in organoid swelling assays, including the new drug-induced swelling assay that we show here. OrgaSegment enabled easy quantification of organoid swelling and could discriminate between organoids with different CFTR mutations, as well as measure responses to CFTR modulating drugs. The easy-to-apply label-free segmentation tool can help to study CFTR-based fluid secretion and possibly other epithelial ion transport mechanisms in organoids