28 research outputs found

    Evaluation of the QIAstat-Dx RP2.0 and the BioFire FilmArray RP2.1 for the Rapid Detection of Respiratory Pathogens Including SARS-CoV-2

    Get PDF
    Point-of-care syndromic panels allow for simultaneous and rapid detection of respiratory pathogens from nasopharyngeal swabs. The clinical performance of the QIAstat-Dx Respiratory SARS-CoV-2 panel RP2.0 (QIAstat-Dx RP2.0) and the BioFire FilmArray Respiratory panel RP2.1 (BioFire RP2.1) was evaluated for the detection of SARS-CoV-2 and other common respiratory pathogens. A total of 137 patient samples were retrospectively selected based on emergency department admission, along with 33 SARS-CoV-2 positive samples tested using a WHO laboratory developed test. The limit of detection for SARS-CoV-2 was initially evaluated for both platforms. The QIAstat-Dx RP2.0 detected SARS-CoV-2 at 500 copies/mL and had a positive percent agreement (PPA) of 85%. The BioFire RP2.1 detected SARS-CoV-2 at 50 copies/mL and had a PPA of 97%. Both platforms showed a negative percent agreement of 100% for SARS-CoV-2. Evaluation of analytical specificity from a range of common respiratory targets showed a similar performance between each platform. The QIAstat-Dx RP2.0 had an overall PPA of 82% (67–100%) in clinical samples, with differences in sensitivity depending on the respiratory target. Both platforms can be used to detect acute cases of SARS-CoV-2. While the QIAstat-Dx RP2.0 is suitable for detecting respiratory viruses within a clinical range, it has less analytical and clinical sensitivity for SARS-CoV-2 compared to the BioFire RP2.1

    Understanding torquetenovirus (TTV) as an immune marker

    Get PDF
    Torquetenovirus (TTV), a small, single stranded anellovirus, is currently being explored as a marker of immunocompetence in patients with immunological impairment and inflammatory disorders. TTV has an extremely high prevalence and is regarded as a part of the human virome, the replication of which is controlled by a functioning immune system. The viral load of TTV in plasma of individuals is thought to reflect the degree of immunosuppression. Measuring and quantifying this viral load is especially promising in organ transplantation, as many studies have shown a strong correlation between high TTV loads and increased risk of infection on one side, and low TTV loads and an increased risk of rejection on the other side. As clinical studies are underway, investigating if TTV viral load measurement is superior for gauging antirejection therapy compared to medication-levels, some aspects nevertheless have to be considered. In contrast with medication levels, TTV loads have to be interpreted bearing in mind that viruses have properties including transmission, tropism, genotypes and mutations. This narrative review describes the potential pitfalls of TTV measurement in the follow-up of solid organ transplant recipients and addresses the questions which remain to be answered.</p

    Rat-to-Human Transmission of Cowpox Infection

    Get PDF
    We isolated Cowpox virus (CPXV) from the ulcerative eyelid lesions of a 14-year-old girl, who had cared for a clinically ill wild rat that later died. CPXV isolated from the rat (Rattus norvegicus) showed complete homology with the girl’s virus. Our case is the first proven rat-to-human transmission of cowpox

    Exploring a prolonged enterovirus C104 infection in a severely ill patient using nanopore sequencing

    Get PDF
    Chronic enterovirus infections can cause significant morbidity, particularly in immunocompromised patients. This study describes a fatal case associated with a chronic untypeable enterovirus infection in an immunocompromised patient admitted to a Dutch university hospital over nine months. We aimed to identify the enterovirus genotype responsible for the infection and to determine potential evolutionary changes. Long-read sequencing was performed using viral targeted sequence capture on four respiratory and one faecal sample. Phylogenetic analysis was performed using a maximum likelihood method, along with a root-to-tip regression and time-scaled phylogenetic analysis to estimate evolutionary changes between sample dates. Intra-host variant detection, using a Fixed Ploidy algorithm, and selection pressure, using a Fixed Effect Likelihood and a Mixed Effects Model of Evolution, were also used to explore the patient samples. Near-complete genomes of enterovirus C104 (EV-C104) were recovered in all respiratory samples but not in the faecal sample. The recovered genomes clustered with a recently reported EV-C104 from Belgium in August 2018. Phylodynamic analysis including ten available EV-C104 genomes, along with the patient sequences, estimated the most recent common ancestor to occur in the middle of 2005 with an overall estimated evolution rate of 2.97 × 10(−3) substitutions per year. Although positive selection pressure was identified in the EV-C104 reference sequences, the genomes recovered from the patient samples alone showed an overall negative selection pressure in multiple codon sites along the genome. A chronic infection resulting in respiratory failure from a relatively rare enterovirus was observed in a transplant recipient. We observed an increase in single-nucleotide variations between sample dates from a rapidly declining patient, suggesting mutations are weakly deleterious and have not been purged during selection. This is further supported by the persistence of EV-C104 in the patient, despite the clearance of other viral infections. Next-generation sequencing with viral enrichment could be used to detect and characterise challenging samples when conventional workflows are insufficient

    An integrated stewardship model: antimicrobial, infection prevention and diagnostic (AID)

    Get PDF
    Considering the threat of antimicrobial resistance and the difficulties it entails in treating infections, it is necessary to cross borders and approach infection management in an integrated, multidisciplinary manner. We propose the antimicrobial, infection prevention and diagnostic stewardship model comprising three intertwined programs: antimicrobial, infection prevention and diagnostic stewardship, involving all stakeholders. The focus is a so-called ‘theragnostics’ approach. This leads to a personalized infection management plan, improving patient care and minimizing resistance development. Furthermore, it is important that healthcare regions nationally and internationally work together, ensuring that the patient (and microorganism) transfers will not cause problems in a neighboring institution. This antimicrobial, infection prevention and diagnostic stewardship model can serve as a blue print to implement innovative, integrative infection management

    Cowpox Virus Transmission from Rats to Monkeys, the Netherlands

    Get PDF
    We report an outbreak of cowpox virus among monkeys at a sanctuary for exotic animals. Serologic analysis and polymerase chain reaction were performed on blood and swab samples from different rodent species trapped at the sanctuary during the outbreak. Sequence comparison and serologic results showed that brown rats (Rattus norvegicus) transmitted the virus to monkeys

    Proton Pump Inhibitor Use, Fatigue, and Health-Related Quality of Life in Kidney Transplant Recipients:Results From the TransplantLines Biobank and Cohort Study

    Get PDF
    Rationale &amp; Objective: Prior studies report that the use of proton pump inhibitors (PPIs) can adversely affect gut microbiota and gastrointestinal uptake of micronutrients, in particular iron and magnesium, and are used frequently by kidney transplant recipients. Altered gut microbiota, iron deficiency, and magnesium deficiency have been implicated in the pathogenesis of chronic fatigue. Therefore, we hypothesized that PPI use may be an important and underappreciated cause of fatigue and reduced health-related quality of life (HRQoL) in this population. Study Design: Cross-sectional study. Setting &amp; Participants: Kidney transplant recipients (≥1 year after transplantation) enrolled in the TransplantLines Biobank and Cohort Study. Exposure: PPI use, PPI type, PPI dosage, and duration of PPI use. Outcome: Fatigue and HRQoL, assessed using the validated Checklist Individual Strength 20 Revised questionnaire and Short Form-36 questionnaire. Analytical Approach: Logistic and linear regression. Results: We included 937 kidney transplant recipients (mean age 56 ± 13 years, 39% female) at a median of 3 (1-10) years after transplantation. PPI use was associated with fatigue severity (regression coefficient 4.02, 95% CI, 2.18 to 5.85, P &lt; 0.001), a higher risk of severe fatigue (OR 2.05, 95% CI, 1.48 to 2.84, P &lt; 0.001), lower physical HRQoL (regression coefficient −8.54, 95% CI, −11.54 to −5.54, P &lt; 0.001), and lower mental HRQoL (regression coefficient −4.66, 95% CI, −7.15 to −2.17, P &lt; 0.001). These associations were independent of potential confounders including age, time since transplantation, history of upper gastrointestinal disease, antiplatelet therapy, and the total number of medications. They were present among all individually assessed PPI types and were dose dependent. Duration of PPI exposure was only associated with fatigue severity. Limitations: Residual confounding and inability to assess causal relationships. Conclusions: PPI use is independently associated with fatigue and lower HRQoL among kidney transplant recipients. PPI use might be an easily accessible target for alleviating fatigue and improving HRQoL among kidney transplant recipients. Further studies examining the effect of PPI exposure in this population are warranted. Plain-Language Summary: In this observational study, we investigated the association of proton pump inhibitors with fatigue and health-related quality of life among kidney transplant recipients. Our data showed that proton pump inhibitors were independently associated with fatigue severity, severe fatigue, and lower physical and mental health-related quality of life. These associations were present among all individually assessed proton pump inhibitor types and were dose dependent. While we await future studies on this topic, proton pump inhibitor use might be an easily accessible target for alleviating fatigue and improving health-related quality of life among kidney transplant recipients.</p

    Elevated risk of infection with SARS-CoV-2 Beta, Gamma, and Delta variants compared with Alpha variant in vaccinated individuals

    Get PDF
    The extent to which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) break through infection- or vaccine-induced immunity is not well understood. We analyzed 28,578 sequenced SARS-CoV-2 samples from individuals with known immune status obtained through national community testing in the Netherlands from March to August 2021. We found evidence of an increased risk of infection by the Beta (B.1.351), Gamma (P.1), or Delta (B.1.617.2) variants compared with the Alpha (B.1.1.7) variant after vaccination. No clear differences were found between vaccines. However, the effect was larger in the first 14 to 59 days after complete vaccination compared with ≥60 days. In contrast to vaccine-induced immunity, there was no increased risk for reinfection with Beta, Gamma, or Delta variants relative to the Alpha variant in individuals with infection-induced immunity.</p

    Hepatitis C virus

    No full text
    corecore